Skip to main content
Log in

New insights on fractional thermoelectric MHD theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A mathematical model of thermoelectric MHD theory has been developed in the context of a study of heat conduction using a new fractal form of Green–Naghdi theory without energy dissipation (FGN-II). Theories of coupled (CT) and Green–Naghdi of type II (GN-II) thermoelectric fluid follow as limit cases. This model is applied to different problems of thermoelectric fluid bounded by an infinite plane surface with constant temperature in the presence of a uniform magnetic field. State space approach utilized for one-dimensional heat source situations. Techniques based on the Laplace transform are employed. The resulting formulation is applied to a problem for the entire space with heat sources distributed in a plane. Reflection approach tackles semi-space problem with heat source distribution and entire space solution. The numerical technique is used to achieve the Laplace transform inversion. The comparisons in the figures help assess how the fractional order parameter effects on the behavior of the field quantities in the new theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B :

Magnetic induction vector

q :

Heat flux vector

\(C_p\) :

Specific heat at constant pressure

\(F_i\) :

Lorentz force

H :

Magnetic field intensity vector

H o :

Constant component of magnetic field

J :

Conduction electric density vector

\(k\) :

Thermal conductivity

\(P_r\) :

Prandtl number

\(S\) :

Seebeck coefficient

\(k_o\) :

Seebeck coefficient at temperature \(T_o\)

t :

Time

T :

Temperature

\(T_w\) :

Temperature of the plate

\(T_\infty\) :

Temperature of the fluid away from the plate

\(T_o\) :

\(= T_w - T_\infty\), Reference temperature

\(U\) :

The standard speed, \([U] = {\text{m}}/{\text{s}}\)

Q :

Intensity of the applied heat source

M :

\(= \frac{\upsilon \sigma_o B_o^2 }{{\rho U^2 }}\), Magnetic number

\({{\varvec{u}}}\) :

Components of velocity vector \((u,v,w)\)

x :

Space coordinates (x, y, z)

\(\rho\) :

Density

\(\alpha\) :

Fractional derivative parameters

\(\tau_{ij}\) :

\(= \mu \left( {u_{i,j} + u_{j,i} } \right)\), Stress components

\(\mu_o\) :

Magnetic permeability

\(\mu\) :

Dynamic viscosity

\(\upsilon_o\) :

\(= \mu /\rho\) Kinematic viscosity

\(\sigma_o\) :

Electrical conductivity

\(\Pi\) :

Peltier Coefficient

\(\pi_o\) :

Peltier Coefficient at temperature \(T_0\)

References

  1. Goldstein, R.J., Eckert, E.R.G., Ibele, W.E., et al.: Heat transfer—a review of 2002 Literature. Int. J. Heat Mass Transf. 48, 819–927 (2005)

    Article  Google Scholar 

  2. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  3. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  4. Chiritâ, S., Ciarletta, M.: Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech. Res. Commun. 37(3), 271–275 (2010)

    Article  Google Scholar 

  5. Ezzat, M.A., Zakaria, M., El-Bary, A.A.: Generalized thermoelasticity with temperature dependent modulus of elasticity under three theories. J. Appl. Math. Comput. 14(1/2), 193–212 (2004)

    Article  MathSciNet  Google Scholar 

  6. El-Attar, S.I., Hendy, M.H., Ezzat, M.A.: On phase-lag Green–Naghdi theory without energy dissipation for electro-thermoelasticity including heat sources. Mech. Based Des. Struct. Mach. 47(6), 769–786 (2019)

    Article  Google Scholar 

  7. Shereif, H.H., Raslan, W.E.: Thermoelastic interactions without energy dissipation in an unbounded body with a cylindrical cavity. J. Therm. Stress. 39(3), 326–332 (2016)

    Article  Google Scholar 

  8. Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Article  Google Scholar 

  9. Ren, Q., Chan, C.L., Arvayo, A.L.: A numerical study of 2D electrothermal flow using boundary element method. Appl. Math. Model. 39(9), 2777–2795 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993)

    Article  Google Scholar 

  11. Rowe, D.M.: CRC Handbook of Thermoelectrics. CRC Press, Boca Raton (1995)

    Google Scholar 

  12. Morelli, D.T.: Thermoelectric devices. In: Trigg, G.L., Immergut, E.H. (eds.) Encyclopedia of Applied Physics, vol. 21, pp. 339–354. Wiley, New York (1997)

    Google Scholar 

  13. Shercliff, J.A.: Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91(2), 231–251 (1979)

    Article  Google Scholar 

  14. Ezzat, M. A., El-Karamany, A.S., Fayik, M.A.: Fractional ultrafast laser-induced thermo-elastic behavior in metal films. J. Therm. Stress. 35(7), 637−651 (2012)

  15. Moreau, R.: Local and instantaneous measurements in liquid metal MHD. In: Hanson, B.W. (ed.) Proceedings of the Dynamic Flow Conference (1978), DISA Elektronik A/S, pp. 65–79 (1975)

  16. Mityakov, A.V., Mityakov, V.Y., Sapozhnikov, S.Z., Chumakov, Y.S.: Application of the transverse Seebeck effect to measurement of instantaneous values of a heat flux on a vertical heated surface under conditions of free-convection heat transfer. High Temp. 40, 620–625 (2002)

    Article  Google Scholar 

  17. Ezzat, M.A., Youssef, H.M.: Stokes’ first problem for an electro-conducting micropolar fluid with thermoelectric properties. Can. J. Phys. 88, 35–48 (2010)

    Article  Google Scholar 

  18. Ezzat, M.A., El-Bary, A.A., Ezzat, S.M.: Stokes’ first problem for a thermoelectric Newtonian fluid. Meccanica 48(5), 1161–1175 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Google Scholar 

  20. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives Theory and Applications. Wiley, New York (1993)

    Google Scholar 

  21. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, Longhorne (1993)

    Google Scholar 

  22. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    Google Scholar 

  23. Povstenko, Y.Z.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009)

    Article  MathSciNet  Google Scholar 

  24. Lu, Y., Li, C., He, T.: Fractional-order non-Fick mechanical diffusion model base on new fractional derivatives and structural transient dynamic responses of multilayered composite laminates. Arch. Appl. Mech. 94(2), 239–259 (2024)

    Article  Google Scholar 

  25. El-Dib, Y.O., Elgazery, N.S., Alyousef, H.A.: Galerkin’s method to solve a fractional time-delayed jerk oscillator. Arch. Appl. Mech. 93(9), 3597–3607 (2023)

    Article  Google Scholar 

  26. Tian, L., Peng, W., He, T.: A modified fractional-order thermo-viscoelastic model and its application in thermal-induced nonlocal response analysis of a microscale plate. Arch. Appl. Mech. 93(2), 687–705 (2023)

    Article  Google Scholar 

  27. Sherief, H.H., El-Sayed, A.M.A., Abd El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)

    Article  Google Scholar 

  28. Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 405(19), 4188–4194 (2010)

    Article  Google Scholar 

  29. Ezzat, M.A.: Theory of fractional order in generalized thermoelectric MHD. Appl. Math. Model. 35(10), 4965–4978 (2011)

    Article  MathSciNet  Google Scholar 

  30. Ezzat, M.A.: Thermoelectric MHD with modified Fourier’s law. Int. J. Therm. Sci. 50(4), 449–455 (2011)

    Article  MathSciNet  Google Scholar 

  31. Ezzat, M.A.: State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf. 48(1), 71–82 (2012)

    Article  Google Scholar 

  32. Ezzat, M.A.: Bio-thermo-mechanics behavior in living viscoelastic tissue under the fractional dual-phase-lag theory. Arch. Appl. Mech. 9(1/2), 3903–3919 (2021)

    Article  Google Scholar 

  33. Ezzat, M.A., El-Karamany, A.S.: Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP 62(5), 937–952 (2011)

    MathSciNet  Google Scholar 

  34. Ezzat, M.A., El-Karamany, A.S.: Theory of fractional order in electro-thermoelasticity. Eur. J. Mech. A/Solid 30(4), 491–500 (2011)

    Article  Google Scholar 

  35. Ezzat, M.A., El-Karamany, A.S., Fayik, M.A.: Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch. Appl. Mech. 82(4), 557–572 (2012)

    Article  Google Scholar 

  36. Ezzat, M.A., El-Bary, A.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108(10), 62–69 (2016)

    Article  Google Scholar 

  37. Youssef, H.M., Al-Lehaibi, E.A.N.: The photothermal interaction of a semiconducting solid sphere based on three Green–Naghdi theories due to the fractional-order strain and ramp-type heating. Mech. Time-Depend. Mater. 27, 1237–1256 (2023)

    Article  Google Scholar 

  38. Youssef, H.M., Alghamdi, A.A.: Fractional-order strain on an infinite material with a spherical cavity under Green–Naghdi hyperbolic two-temperature thermoelasticity theory. J. Eng. Therm. Sci. (2023). https://doi.org/10.21595/jets.2023.23372

    Article  Google Scholar 

  39. Ezzat, M.A., El-Bary, A.A.: Analysis of thermoelectric viscoelastic wave characteristics in the presence of a continuous line heat source with memory dependent derivatives. Arch. Appl. Mech. 93(2), 605–619 (2023)

    Article  Google Scholar 

  40. Abouelregal, A.E., Sedighi, H.M., Megahid, S.F.: Photothermal-induced interactions in a semiconductor solid with a cylindrical gap due to laser pulse duration using a fractional MGT heat conduction model. Arch. Appl. Mech. 93(6), 2287–2305 (2023)

    Article  Google Scholar 

  41. Ezzat, M.A.: State space approach to solids and fluids. Can. J. Phys. 86(11), 1242–1250 (2008)

    Article  Google Scholar 

  42. Aldawody, D.A., Hendy, M.H., Ezzat, M.A.: Fractional Green–Naghdi theory for thermoelectric MHD. Waves R. C. Med. 29(4), 631–644 (2019)

    MathSciNet  Google Scholar 

  43. Kimmich, R.: Strange kinetics, porous media, and NMR. J. Chem. Phys. 284, 243–285 (2002)

    Google Scholar 

  44. Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55(7/8), 2095–2101 (2012)

    Article  Google Scholar 

  45. Nowinski, J.: Theory of Thermoelasticity with Applications. Sijthoff & Noordhoff International Publishers, Alphenaan den Rijn, p. 826 (1978)

  46. Sherief, H.H.: State space formulation for generalized thermoelasticity with one relaxation time including heat sources. J. Therm. Stress. 16(2), 163–180 (1993)

    Article  MathSciNet  Google Scholar 

  47. Ezzat, M.A.: Free convection effects on extracellular fluid in the presence of a transverse magnetic field. Appl. Math. Comput. 151(2), 347–362 (2004)

    MathSciNet  Google Scholar 

  48. Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10(1), 113–132 (1984)

    Article  MathSciNet  Google Scholar 

  49. Sherief, H.H., Hussein, E.M.: Contour integration solution for a thermoelastic problem of a spherical cavity. Appl. Math. Comput. 320, 557–571 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the approval and the support of this research study by the Grant No. SCIA-2023-12-2109 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission: * made substantial contributions to the conception or design of the work; or the acquisition, analysis or interpretation of data; or the creation of new software used in the work; * drafted the work or revised it critically for important intellectual content; * approved the version to be published and * agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Magdy A. Ezzat.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{gathered} a_o = \frac{k_1^2 \cosh k_2 y - k_2^2 \cosh k_1 y}{{k_1^2 - k_2^2 }},\quad a_1 = \frac{k_1^3 \sinh k_2 y - k_2^3 \sinh k_1 y}{{k\_1 \ k_2 (k_1^2 - k_2^2 )}}, \hfill \\ a_2 = \frac{\cosh k_1 y - \cosh k_2 y}{{k_1^2 - k_2^2 }},\quad a_3 = \frac{k_2 \sinh k_1 y - k_1 \sinh k_2 y}{{k_1 k_2 (k_1^2 - k_2^2 )}}. \hfill \\ \end{gathered} $$

Appendix B

$$ \begin{aligned} \ell_{11} & = \frac{(k_1^2 - m)\cosh k_2 y - (k_2^2 - m)\cosh k_1 y}{{k_1^2 - k_2^2 }}, \\ \ell_{12} & = - \ n(s + M)\left[ {\frac{k_2 \sinh k_1 y - k_1 \sinh \ k_2 y}{{k_1 k_2 \left( {k_1^2 - k_2^2 } \right)}}} \right]{,} \\ \ell_{13} & = \frac{{k_2 \left( {k_1^2 - s - M} \right)\sinh k_1 y - k_1 \left( {k_2^2 - s - M} \right)\sinh k_2 y}}{{k_1 k_2 \left( {k_1^2 - k_2^2 } \right)}}{,} \\ \ell_{14} & = - n\left[ {\frac{{{\text{cosh}}k_1 y - \cosh k_2 y}}{k_1^2 - k_2^2 }} \right]{,}\quad \ell_{21} = m\ K_o \left[ {\frac{k_2 \sinh k_1 y - k_1 \sinh \ k_2 y}{{k_1 k_2 \left( {k_1^2 - k_2^2 } \right)}}} \right]{,} \\ \ell_{22} & = \frac{{\left( {k_1^2 - s - M} \right)\cosh k_2 y - \left( {k_2^2 - s - M} \right)\cosh k_1 y}}{k_1^2 - k_2^2 }{,} \\ \ell_{23} & = K_o \left[ {\frac{{{\text{cosh}}k_1 y - \cosh k_2 y}}{k_1^2 - k_2^2 }} \right]{,} \\ \ell_{24} & = \frac{{k_2 \left( {k_1^2 - m} \right)\sinh k_1 y - k_1 \left( {k_2^2 - m} \right)\sinh k_2 y}}{{k_1 k_2 \left( {k_1^2 - k_2^2 } \right)}}\,{,} \\ \ell_{31} & = m\left[ {\frac{{k_2 \left( {k_1^2 - s - M} \right)\sinh k_1 y - k_1 \left( {k_2^2 - s - M} \right)\sinh k_2 y}}{{k_1 k_2 \left( {k_1^2 - k_2^2 } \right)}}} \right]{,} \\ \ell_{32} & = - n(s + M)\left[ {\frac{{{\text{cosh}}k_1 y - \cosh k_2 y}}{k_1^2 - k_2^2 }} \right]{,} \\ \ell_{33} & = \frac{{\left( {k_1^2 - s - M} \right)\cosh k_1 y - \left( {k_2^2 - s - M} \right)\cosh k_2 y}}{k_1^2 - k_2^2 }{,} \\ \ell_{34} & = - n\left[ {\frac{k_1 \sinh k_1 y - k_2 \sinh k_2 y}{{k_1^2 - k_2^2 }}} \right]{,}\quad \ell_{41} = mK_o \left[ {\frac{{{\text{cosh}}k_1 y - \cosh k_2 y}}{k_1^2 - k_2^2 }} \right]\,{,} \\ \ell_{42} & = (s + M)\left[ {\frac{{k_2 \left( {k_1^2 - m} \right)\sinh k_1 y - k_1 \left( {k_2^2 - m} \right)\sinh k_2 y}}{{k_1 k_2 \left( {k_1^2 - k_2^2 } \right)}}} \right]{,} \\ \ell_{43} & = K_o \left[ {\frac{k_1 \sinh k_1 y - k_2 \sinh k_2 y}{{k_1^2 - k_2^2 }}} \right]{,} \\ \ell_{44} & = \frac{(k_1^2 - \, m)\cosh k_1 y - (k_2^2 - m)\cosh k_2 y}{{k_1^2 - k_2^2 }}{.} \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alruwaili, A.S., Hassaballa, A.A., Hendy, M.H. et al. New insights on fractional thermoelectric MHD theory. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02597-3

Keywords

Navigation