Skip to main content
Log in

Pore characteristics and permeability changes of high-temperature limestone after rapid cooling by dry ice

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This article adopts the fire extinguishing of tunnels as the engineering background, considers limestone as the research object, uses dry ice to quickly cool the limestone after high-temperature treatment at different temperatures (25–700 °C), and applies the microscopic magnifying glass, nuclear magnetic resonance, and permeability tester for studying the surface characteristics, porosity, and permeability of limestones. The research reports the following characteristics. (1) The color of the sample surface becomes lighter and whiter with an increase in the heating temperature. When the temperature above 400℃, the cracks appear on the surface of the rock and the micropores (0 ms < T2 < 10 ms), the number of mesopores (10 ms < T2 < 100 ms) began to develop. (2) The permeability of limestone increases with the increase of heat treatment temperature. When the heat treatment temperature above 400℃, the roughness of the rock surface becomes larger, and the permeability of the sample increases sharply. (3) The rapid cooling of dry ice aggravates the thermal damage effect of limestone, when the heating temperature above 400 °C, the porosity and permeability of limestone increase greatly, and the damage becomes more severe at 600 °C. Compared with natural cooling, dry ice cooling increases the permeability of limestone more significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Boivin V, Gagné B, Campeau A, Tremblay M, Dubeau S (2013) Tunnelling in Montréal’s limestones a geotechnical characterization. In Proceedings of the 66th Canadian Geotechnical conference (GeoMontreal)

  2. Toševski A, Pollak D, Ženko T, Aljinović D, Tadej N (2011) Some engineering properties of limestone: Tunnel Stražina case study (Croatia). Tunn Undergr Space Technol 26(1):242–251. https://doi.org/10.1016/j.tust.2010.08.004

    Article  Google Scholar 

  3. Song Z, Cheng Y, Tian X, Wang J, Yang T (2020) Mechanical properties of limestone from Maixi tunnel under hydro-mechanical coupling. Arab J Geosci 13:1–13. https://doi.org/10.1007/s12517-020-05373-z

    Article  Google Scholar 

  4. Huang ZP, Zhang Y, Sun YK, Liu CY, Wu WD (2016) Mechanical and acoustic characteristics of high temperature limestone with water cooling treatment. J Cent South Univ (Sci Technol) 12:4181–4189. https://doi.org/10.11817/j.issn.1672-7207.2016.12.029

  5. Gao JW, Ma GW, Fan LF (2019) Research on the effect of cooling method on crack distribution of high-temperature granite. J Exp Mech 34(3):381–387 ((in Chinese))

    Google Scholar 

  6. Ingason H, Li YZ, Appel G, Lundström U, Becker C (2016) Large scale tunnel fire tests with large droplet water-based fixed fire fighting system. Fire Technol 52(5):1539–1558. https://doi.org/10.1007/s10694-015-0479-9

    Article  Google Scholar 

  7. Carvel R (2019) A review of tunnel fire research from Edinburgh. Fire Saf J 105:300–306. https://doi.org/10.1016/j.firesaf.2016.02.004

    Article  Google Scholar 

  8. Killc Ö (2006) The influence of high temperatures on limestone P-wave velocity and Schmidt hammer strength. Int J Rock Mech Min Sci 43(6):980–986. https://doi.org/10.1016/j.ijrmms.2005.12.013

    Article  Google Scholar 

  9. Tang F, Mao X, Zhang L, Yin H, Li Y (2011) Effects of strain rates on mechanical properties of limestone under high temperature. Min Sci Technol (China) 21(6):857–861. https://doi.org/10.1016/j.mstc.2011.05.032

    Article  Google Scholar 

  10. Zhang W, Sun Q, Zhu S, Wang B (2017) Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Appl Therm Eng 110:356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194

    Article  Google Scholar 

  11. Yang R, Huang Z, Shi Y, Yang Z, Huang P (2019) Laboratory investigation on cryogenic fracturing of hot dry rock under triaxial-confining stresses. Geothermics 79:46–60. https://doi.org/10.1016/j.geothermics.2019.01.008

    Article  Google Scholar 

  12. Ge Z, Sun Q, Zhang N (2020) Changes in surface roughness of sandstone after heating and cooling cycles. Arab J Geosci 13(8):1–8. https://doi.org/10.1007/s12517-020-05295-w

    Article  Google Scholar 

  13. Li P, Sun Q, Tang S, Li D, Yang T (2021) Effect of heat treatment on the emission rate of radon from red sandstone. Environ Sci Pollut Res 1–11. https://doi.org/10.1007/s11356-021-15079-8

  14. Zhao HB, Chen LJ (2011) Experimental study of thermal expansion property of limestone. Rock and Soil Mechanics 32(6):1725–1730. https://doi.org/10.1631/jzus.B1000185

    Article  Google Scholar 

  15. Llana FS, Rutter EH (2008) Strain localization in direct shear experiments on Solnhofen limestone at high temperature–effects of transpression. J Struct Geol 30(11):1372–1382. https://doi.org/10.1016/j.jsg.2008.07.004

    Article  Google Scholar 

  16. Allan SM, Fall ML, Kiley EM, Kopyt P, Shulman HS, Yakovlev VV (2012) Modeling of hybrid (heat radiation and microwave) high temperature processing of limestone. Microwave Symposium Digest, IEEE

  17. Valverde JM (2015) On the negative activation energy for limestone calcination at high temperatures nearby equilibrium. Chem Eng Sci 132:169–177. https://doi.org/10.1016/j.ces.2015.04.027

    Article  Google Scholar 

  18. Meng Q, Zhang M, Han L, Hai P, Chen Y (2019) Experimental research on the influence of loading rate on the mechanical properties of limestone in a high-temperature state. Bull Eng Geol Env 78(5):3479–3492. https://doi.org/10.1007/s10064-018-1332-4

    Article  Google Scholar 

  19. Zhang W, Qian H, Sun Q, Chen Y (2015) Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environ Earth Sci 74(7):5739–5748. https://doi.org/10.1007/s12665-015-4591-4

    Article  Google Scholar 

  20. Tian H, Kempka T, Xu NX, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45(6):1113–1117. https://doi.org/10.1007/s00603-012-0228-z

    Article  Google Scholar 

  21. Kožušníková A, Konečný P (2011) Influence of temperature on the permeability of rocks. Géotechnique 61(12):1081–1085. https://doi.org/10.1680/geot.8.T.034

    Article  Google Scholar 

  22. Gaunt HE, Sammonds PR, Meredith PG, Chadderton A (2016) Effect of temperature on the permeability of lava dome rocks from the 2004–2008 eruption of Mount St. Helens. Bull Volcanol 78(4):30. https://doi.org/10.1007/s00445-016-1024-5

    Article  Google Scholar 

  23. Wang HL, Xu WY (2013) Permeability evolution laws and equations during the course of deformation and failure of brittle rock. J Eng Mech 139(11):1621–1626. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000608

    Article  Google Scholar 

  24. Wang HL, Xu WY, Zuo J, Shao J, Jia C (2015) Evolution law of the permeability and porosity for low-permeability rock based on gas permeability test. J Hydra Eng 46(2):208–216. https://doi.org/10.13243/j.cnki.slxb.2015.02.010

  25. Xu P, Yang SQ (2019) Influence of stress and high-temperature treatment on the permeability evolution behavior of sandstone. Acta Mech Sin 35(2):419–432. https://doi.org/10.1007/s10409-018-0824-6

    Article  MathSciNet  Google Scholar 

  26. Ko YJ, Hadjisophocleous GV (2013) Study of smoke backlayering during suppression in tunnels. Fire Saf J 58:240–247. https://doi.org/10.1016/j.firesaf.2013.03.001

    Article  Google Scholar 

  27. Gamal AA (2013) Impact of Fire Extinguishing Techniques On Concrete Performance. Int Balkans Conf Challenges of Civil Eng. http://dspace.epoka.edu.al/handle/1/450

  28. Vu MN, Nguyen ST, To QD, Dao NH (2017) Theoretical predicting of permeability evolution in damaged rock under compressive stress. Geophys J Int 209(2):1352–1361. https://doi.org/10.1093/gji/ggx094

    Article  Google Scholar 

  29. Tomac I, Sauter M (2018) A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renew Sustain Energy Rev 82:3972–3980. https://doi.org/10.1016/j.rser.2017.10.076

    Article  Google Scholar 

  30. Shu B, Zhu R, Tan J, Zhang S, Liang M (2019) Evolution of permeability in a single granite fracture at high temperature. Fuel 242:12–22. https://doi.org/10.1016/j.fuel.2019.01.031

    Article  Google Scholar 

  31. Ge Z, Sun Q, Yang T, Luo T, Yang D (2021) Effect of high temperature on mode-i fracture toughness of granite subjected to liquid nitrogen cooling. Eng Fract Mech 252(3):107834. https://doi.org/10.1016/j.engfracmech.2021.107834

    Article  Google Scholar 

  32. Savage KA (2016) Nondestructive methods to characterize rock mechanical properties at low-temperature: Applications for asteroid capture technologies. West Virginia University

  33. Smith AG, Pells PJN (2008) Impact of fire on tunnels in Hawkesbury sandstone. Tunn Undergr Space Technol 23(1):65–74. https://doi.org/10.1016/j.tust.2006.11.003

    Article  Google Scholar 

  34. Shao S, Wasantha P, Ranjith PG, Chen BK (2014) Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. Int J Rock Mech Min Sci 70:81–387. https://doi.org/10.1016/j.ijrmms.2014.04.003

    Article  Google Scholar 

  35. Martinez IV, Garrido ME, Signes CH, Tomás R (2020) Study of explosive behaviour at high temperatures on limestones from a road tunnel in Spain. In ISRM Int Symposium-EUROCK 2020. OnePetro

  36. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630. https://doi.org/10.1103/PhysRev.94.630

    Article  Google Scholar 

  37. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691. https://doi.org/10.1063/1.1716296

    Article  Google Scholar 

  38. ISO (1997) ISO:42871997 Geometrical product specifications (GPS) —Surface texture: Profle method – Terms, defnitions and surface texture parameters

  39. Xue S, Sun Q, Jia H, Zhang L, Wang S (2021) Effects of water content and salinity on the porosity structure and resistivity of loess soil sintered at 1000 °C. Arab J Geosci 14(15):1–11. https://doi.org/10.1007/s12517-021-07883-w

    Article  Google Scholar 

  40. Dunn KJ, Bergman JD, Latorraca AG (2002) Nuclear magnetic resonance: Petrophysical and logging applications. Elsevier

  41. Hou X, Zhu Y, Wang Y, Liu Y (2019) Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs. Fuel 254:115712. https://doi.org/10.1016/j.fuel.2019.115712

    Article  Google Scholar 

  42. Jing X, Sun Q, Jia H, Ge Z, Wang T (2021) Influence of high-temperature thermal cycles on the pore structure of red sandstone. Bull Eng Geol Env 1–14. https://doi.org/10.1007/s10064-021-02389-x

  43. Slijkerman W, Hofman JP, Looyestijn WJ, Volokitin Y (2001) A practical approach to obtain primary drainage capillary pressure curves from nmr core and log data. Petrophysics 42(4):334–343

  44. Zhang H, Sun Q, Jia H, Dong Z, Luo T (2021) Effects of high-temperature thermal treatment on the porosity of red sandstone: an NMR analysis. Acta Geophys 69(1):113–124. https://doi.org/10.1007/s11600-020-00526-w

    Article  Google Scholar 

  45. Hodot BB (1966) Outburst of coal and coalbed gas (Chinese Translation). China Coal Industry Press, Beijing, p 318

    Google Scholar 

  46. Cai Y, Liu D, Pan Z, Yao Y, Li J, Qiu Y (2013) Petrophysical characterization of chinese coal cores with heat treatment by nuclear magnetic resonance. Fuel 108:292–302. https://doi.org/10.1016/j.fuel.2013.02.031

    Article  Google Scholar 

  47. Jin P, Hu Y, Shao J, Liu Z, Feng G, Song S (2020) Influence of temperature on the structure of pore–fracture of sandstone. Rock Mech Rock Eng 53(1):1–12. https://doi.org/10.1007/s00603-019-01858-w

    Article  Google Scholar 

  48. Liu JR, Wu XD (2003) Discussion of the Permeability increasing mechanism of thermal treated rock. Oil Drill Prod Technol 25(5):43–46. https://doi.org/10.1007/BF02974893

    Article  Google Scholar 

  49. Chen Y, Zhang Y (2017) Experimental study of physical and mechanical behavior of limestone subjected to different heat treatment temperatures. Chinese J Rock Mech Eng 36:3732–3739. https://doi.org/10.13722/j.cnki.jrme.2017.0932

  50. Chen LJ, Zhao HB, Liu XL, Huang XG (2008) Experimental research on heat swelling power of sandstone and limestone. J China Univ Min Technol 37(5):670–674. https://doi.org/10.1016/S1872-5813(08)60033-X

    Article  Google Scholar 

  51. Liu JR, Qin JS, Wu XD (2001) Experimental study on relation between temperature and rocky permeability. J Univ Petroleum 25(4):51–53

    Google Scholar 

  52. Qin BD, Luo YJ, Men YM, Chen LJ (2011) Experimental research on swelling properties of limestone and sandstone at high temperature. Rock Soil Mech 32(2):417–423. https://doi.org/10.1631/jzus.A1000209

    Article  Google Scholar 

  53. Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In Stone in architecture 227–316. https://doi.org/10.1007/978-3-642-14475-2_4

  54. Chen LJ, Jun HE, Chao JQ, Qin BD (2009) Swelling and breaking characteristics of limestone under high temperatures. Min Sci Technol 19(4):503–507. https://doi.org/10.1016/S1674-5264(09)60094-6

    Article  Google Scholar 

  55. Moropoulou A, Bakolas A, Aggelakopoulou E (2001) The effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cem Concr Res 31(4):633–639. https://doi.org/10.1016/S0008-8846(00)00490-7

  56. Mcdaniel BW, Grundmann SR, Kendrick WD, Wilson DR, Jordan SW (1998) Field Applications of Cryogenic Nitrogen as a Hydraulic Fracturing Fluid. J Petrol Technol 50:38–39. https://doi.org/10.2118/38623-MS

    Article  Google Scholar 

  57. Bisai R, Palaniappan SK, Pal SK (2020) Effects of high-temperature heating and cryogenic quenching on the physico-mechanical properties of limestone. SN Applied Sciences 2(2):1–10. https://doi.org/10.1007/s42452-020-1944-8

    Article  Google Scholar 

  58. Garrido ME, Martínez-Ibáñez V, Hidalgo C, Biase SD, Tomás R (2020) Effects of thermal gradient on limestone exposed to high temperatures. In ISRM International Symposium-EUROCK 2020. OnePetro

  59. Hu J, Xie H, Sun Q, Li C, Liu G (2021) Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int J Min Sci Technol. https://doi.org/10.1016/j.ijmst.2021.07.010

    Article  Google Scholar 

  60. Sun Q, Zhang W, Su T, Zhu S (2016) Variation of wave velocity and porosity of sandstone after high temperature heating. Acta Geophys 64(3):633–648. https://doi.org/10.1515/acgeo-2016-0021

    Article  Google Scholar 

  61. Hu J, Sun Q, Pan X (2018) Variation of mechanical properties of granite after high-temperature treatment. Arab J Geosci 11(2):1–8. https://doi.org/10.1007/s12517-018-3395-8

    Article  Google Scholar 

  62. Sassoni E, Franzoni E (2014) Influence of porosity on artificial deterioration of marble and limestone by heating. Appl Phys A 115(3):809–816. https://doi.org/10.1007/s00339-013-7863-4

    Article  Google Scholar 

  63. Li JW, Qiu NS, Mei QH, Ding J, Qin JZ, Zheng LJ (2011) Study on measuring the highest rock paleotemperature with thermo-acoustic emission. Chin J Geophys 54(11):2898–2905. https://doi.org/10.3969/j.issn.0001-5733.2011.11.019

    Article  Google Scholar 

  64. Zhang JK, He S, Yi JZ, Zhang BQ, Zhang SW, Zheng LJ, Wang Y (2014) Rock thermo-acoustic emission and basin modeling technologies applied to the study of maximum paleotemperatures and thermal maturity histories of Lower Paleozoic marine shales in the western middle Yangtze area. Acta Petrolei Sinica 35(1):58–67.https://doi.org/10.7623/syxb201401006

  65. Baud P, Schubnel A, Heap M, Rolland A (2017) Inelastic compaction in high-porosity limestone monitored using acoustic emissions. J Geophy Res Sol Earth 122(12):9989–10008. https://doi.org/10.1002/2017JB014627

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 41972288) and the Opening Project of Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources (No. KF2021-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyang Zhao or Qiang Sun.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Sun, Q., Wang, S. et al. Pore characteristics and permeability changes of high-temperature limestone after rapid cooling by dry ice. Heat Mass Transfer 58, 1339–1352 (2022). https://doi.org/10.1007/s00231-021-03171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03171-1

Navigation