Skip to main content
Log in

Pool boiling heat transfer on a plain tube in saturated R-134a and R-410A

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present paper presents the results of an experimental investigation on nucleate pool boiling heat transfer of pure fluid R-134a and environmentally harmless azeotropic refrigerant mixtures R32/R125 (R-410A) on a plain horizontal copper tube. The experiment has been carried out at saturation temperatures of 5, 10, 15 and 20 °C for heat fluxes ranging from 10 to 70 kW/m2 with an interval of 10 kW/m2 in the increasing order of heat flux. The diameter of the test tube was 25.4 mm and an effective length of 130 mm. From experimental results, it is found that the boiling heat transfer coefficient increases with increasing the heat flux and also found that the heat transfer coefficient of refrigerant R-134a was 20–39% lower than that of refrigerant R-410A. Experimental data were compared with empirical correlations available in the literature. The Jung and Gorenflo correlations were well balanced with the present data of both refrigerants at given saturation temperatures. The Jung correlation over-estimates the experimental data of R-134a by 19% and 23% for R-410A where as Gorenflo correlation overpredics the present data of refrigerants R-134a and R-410A about 20% and 50% respectively. The thermal performance of a plain tube was correlated in terms of non-dimensional form having different dimensionless numbers to evaluate the pool boiling heat transfer coefficients of R-134a and R-410A. This correlation showed a good agreement with measured data within an error of ±12 percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

D :

Tube diameter [mm]

d :

Bubble departure diameter, [m]

g:

Gravitational acceleration, [ms−2]

h :

Boiling heat transfer coefficient, [Wm−2 K−1]

k :

Thermal conductivity, [Wm−1 K−1]

M :

Molecular weight, [gmol−1]

n :

Exponent in Gorenflo correlation

Nu :

Nusselt number hD/kl [−]

P :

Pressure, [Psig]

Pc:

Critical pressure, [Psig]

Pr:

Prandtl number [−]

p r :

reduced pressure, P/Pc [−]

q :

heat flux [Wm−2 K−1]

Re :

Reynolds number qD/μlhlv [−]

R p :

roughness, [mm]

T :

temperature, [K]

ΔT :

temperature difference, [K]

ϕ :

contact angle, [deg.]

ν:

kinematic viscosity, [m2 s−1]

ρ:

density, [kgm−3]

σ:

surface tension, [Nm−1]

c:

critical

l :

liquid

sat:

saturation

v:

vapor

References

  1. Chatpun S, Watanabe M, Shoji M (2004) Experimental study on characteristics of nucleate pool boilingby the effects of cavity arrangement. Exp Thermal Fluid Sci 29:33–40

    Article  Google Scholar 

  2. Demiray F, Kim J (2004) Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Int J Heat Mass Transfer 47:3257–3268

    Article  Google Scholar 

  3. Buchholza M, Luttich T, Aurachera H, Marquardt W (2004) Experimental investigation of local processes in pool boiling alongthe entire boiling curve. Int J Heat Fluid Flow 25:243–261

    Article  Google Scholar 

  4. Shoji M (2004) Studies of boiling chaos: a review. Int J Heat Mass Transfer 47:1105–1128

    Article  Google Scholar 

  5. Dhir V, Warrier G, Aktinol E (2013) Numerical simulation of pool boiling: a review. ASME J Heat Transfer 135(6):061502–061517

    Article  Google Scholar 

  6. Gong S, Cheng P (2013) Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int J Heat Mass Transfer 64:122–132

    Article  Google Scholar 

  7. Jiang Y, Osada H, Inagaki M, Horinouchi N (2013) Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int J Heat Mass Transfer 56:640–652

    Article  Google Scholar 

  8. Marcel C, Bonetto F, Clausse A (2011) Simulation of boiling heat transfer in small heaters by a coupled cellular and geometrical automata. Heat Mass Transfer 47:13–25

    Article  Google Scholar 

  9. Marcel C, Clausse A, Frankiewicz C, Betz A, Attinger D (2017) Numerical investigation into the effect of surface wettability in pool boiling heat transfer with a stochastic-automata model. Int J Heat Mass Transfer 111:657–665

    Article  Google Scholar 

  10. Gorenflo D, Sokoi P, Caplanis S (1990) Pool boiling heat transfer from single plain tube to various hydrocarbons. Int J Refrig 13:286–292

    Article  Google Scholar 

  11. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transfer 23(1):73–87

    Article  Google Scholar 

  12. Kolev NI (1995) How accurate can we predict nucleate boiling. Exp Thermal Fluid Sci 10:370–378

    Article  Google Scholar 

  13. Webb RL, Pais C (1992) Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries. Int J Heat Mass Transfer 35(8):1893–1904

    Article  Google Scholar 

  14. Hsieh S, Hsu P (1994) Nucleate boiling characteristics of R-l 14, distended water (H2O) and R-134a on plain and rib-roughned tube geometries. Int J Heat Mass Transfer 37(10):1423–1432

    Article  Google Scholar 

  15. Chiou C, Lu D, Wang C (1997) Pool boiling of R-22, R-124 and R-134a on a plain tube. Int J Heat Mass Transfer 40(7):1657–1666

    Article  Google Scholar 

  16. Barthau G, Hahne E (2004) Experimental study of nucleate pool boiling of R134a on a stainless steel tube. Int J Heat Fluid Flow 25:305–312

    Article  Google Scholar 

  17. Zhang D, Zhu C, Yang X, Han T (2012) Experimental study of R134a Pool boiling on single horizontal enhanced tubes. Adv Mat Res 550–553:3169–3172

    Google Scholar 

  18. Gorgy E, Eckels S (2010) Average heat transfer coefficient for Pool boiling of R-134a and R-123 on smooth and enhanced tubes (RP-1316). HVAC&R Res 16(5):657–676

    Article  Google Scholar 

  19. Rocha S, Kannengieser O, Cardoso E, Passos J (2013) Nucleate pool boiling of R-134a on plain and micro-finned tubes. Int J Refrig 36:456–464

    Article  Google Scholar 

  20. United Nations Environment Programme (1989) Montreal protocol on substances that deplete the ozone layer. Final Act

  21. Cavallini A (1996) Working fluids for mechanical refrigeration. Int J Refrig 19(8):485–496

    Article  Google Scholar 

  22. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethane chlorine atom catalyzed destruction of ozone. Nature 249:810–812

    Article  Google Scholar 

  23. Jung D, Kim Y, Ko Y, Song K (2003) Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. Int J Refrig 26:240–248

    Article  Google Scholar 

  24. Gorenflo D (2001) State of the art in pool boiling heat transfer of new refrigerants. Int J Refrig 24(1):6–14

    Article  MathSciNet  Google Scholar 

  25. Zhao Y, Diao Y, Takaharu T (2008) Experimental investigation in nucleate pool boiling of binary refrigerant mixtures. Appl Therm Eng 28:110–115

    Article  Google Scholar 

  26. Shen J, Spindler K, Hahne E (1999) Pool boiling heat transfer of refrigerant mixtures R32/R125. Int Comm Heat Mass Transfer 26(8):1091–1110

    Article  Google Scholar 

  27. Ribatski G, Thome J (2006) Nucleate boiling heat transfer of R134a on enhanced tubes. Appl Thermal Eng 26:1018–1031

    Article  Google Scholar 

  28. Kline SJ, McClintock FA (1953) Describing uncertainties in single sample experiments. Am Soc Mech Eng 75:3–8

    Google Scholar 

  29. Cooper MG (1984) Saturation nucleate pool boiling a simple correlation. IChemE Symp Ser 86:786–793

    Google Scholar 

  30. Gorenflo D (1997) VDI-heat atlas. VDI-Verlag, Duesseldorf

    Google Scholar 

  31. Jung D (2003) Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. Int J Refrig 26(2):240–248

    Article  Google Scholar 

  32. Sarma PK, Srinivas V, Sharma KV, Dharma RV (2010) Correlation for heat transfer in nucleate boiling on horizontal cylindrical surface. Heat Transfer Eng 31(6):449–457

    Article  Google Scholar 

  33. Lemmon E.W., Huber M.L., McLinden M.O. (2010) NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures—REFPROP version 9.0

  34. Carey VP (1992) Liquid-vapor phase change phenomena. Hemisphere, Washington, DC, p 233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Dewangan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, A.K., Sajjan, S.K., Kumar, A. et al. Pool boiling heat transfer on a plain tube in saturated R-134a and R-410A. Heat Mass Transfer 56, 1179–1188 (2020). https://doi.org/10.1007/s00231-019-02779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02779-8

Navigation