Skip to main content
Log in

Modeling and simulation of heat pipes: review

  • Review Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Heat pipes have been extensively studied using various methods, such as MATLAB, AMESIM, and commercial CFD software. Early numerical models employed the thermal conductance approach, which oversimplified the characteristics and performance of heat pipes. Newer models comprise the thermal resistance model, which emphasizes two-phase heat transfer, AI-based approaches for predicting flow patterns and thermal characteristics, and the CFD model, which accounts for phase changes and two-phase flow utilizing the VoF and phase change models. Although the thermal resistance model demands fewer computing resources, it has limited visualization of the flow pattern and wick structure. In contrast, CFD models offer advantages in visualizing the flow pattern and thermal characteristics but have limitations in terms of consuming computing resources and considering heat transfer from wick structures and mass transfer rates caused by phase changes. Consequently, most simulations are validated with experimental results. Innovative approaches for phase changes in heat pipes and wick structures are necessary to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C 2 :

Inertial resistance factor

D h :

Hydraulic diameter, m

E :

Energy

F :

Correction factor

g i :

Gravitational acceleration, m/s2

h v :

Specific enthalpy of vapor, J/kg

h l :

Specific enthalpy of liquid, J/kg

h :

Convective heat transfer coefficient, W/m2-K

l v :

Latent heat of fluid, J/kg

\({{\dot m}_{l \to v}}\) :

Mass transfer rate from the liquid to vapor phase, kg/s

\({{\dot m}_{v \to l}}\) :

Mass transfer rate from the vapor to liquid phase, kg/s

Pr :

Prandtl number (dimensionless)

p :

Static pressure, N/m2

R th :

Thermal resistance, °C/W

Re :

Reynolds number (dimensionless)

S :

Correction factor

S h :

Volumetric heat source

T :

Temperature, °C

t :

Time, sec

u i :

Velocity tensor

\({\vec v}\) :

Velocity of fluid, m/s

\(\overrightarrow {{v_q}} \) :

Velocity of fluid in phase q, m/s

v :

Specific volume, m3/kg

x :

Quality

x i :

Direction tensor

α :

Permeability, H/m

α q :

Volume fraction of phase

λ l :

Thermal conductivity of liquid phase, W/m·°C

μ :

Dynamic viscosity, kg/m·s

ν :

Kinematic viscosity, m2/s

ρ :

Density, kg/m3

τ ij :

Stress tensor

cv :

Convective boiling

eff :

Effective

g :

Gas

i :

Liquid

LO :

Liquid only

NcB :

Nucleate boiling

th :

Thermal

TP :

Two-phase

sat :

Saturation

v :

Vapor

VO :

Vapor only

References

  1. B. Zohuri, Basic principles of heat pipes and history, Heat Pipe Design and Technology, Springer International Publishing, Cham (2016) 1–41.

    Chapter  Google Scholar 

  2. P. Nemec, Gravity in Heat Pipe Technology, IntechOpen (2017).

  3. F. Li et al., Two-phase flow visualization and heat transfer characteristics analysis in ultra-long gravity heat pipe, Energies 16 (12) (2023) 4709.

    Article  Google Scholar 

  4. B. Zohuri, Other types of heat pipes, Heat Pipe Design and Technology, Springer International Publishing, Cham (2016) 431–449.

    Chapter  Google Scholar 

  5. M. R. Doshi and G. Y. Eastman, Osmotic heat pipe: problems and promises, Letters in Heat and Mass Transfer, 4 (6) (1977) 429–436.

    Article  Google Scholar 

  6. T. B. Jones and M. P. Perry, Electrohydrodynamic heat pipe experiments, Journal of Applied Physics, 45 (5) (1974) 2129–2132.

    Article  Google Scholar 

  7. W. G. Anderson, Different types of heat pipes, Thermal & Fluids Analysis Workshop (TFAWS 2014), Cleveland, USA (2014).

  8. T. Kaya and J. Goldak, Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe, International Journal of Heat and Mass Transfer, 49 (17–18) (2006) 3211–3220.

    Article  Google Scholar 

  9. H. Y. Noh and S. J. Kim, Numerical simulation of pulsating heat pipes: parametric investigation and thermal optimization, Energy Conversion and Management, 203 (2020) 112237.

    Article  Google Scholar 

  10. P. J. Brennan and E. J. Kroliczek, Heat Pipe Design Handbook, B&K Engineering, Inc, USA, N81-70113 (1979).

    Google Scholar 

  11. P. Wallin, Heat pipe, selection of working fluid, MVK160 Heat and Mass Trasfer Project Report, Lund, Sweden (2012) 1–7.

  12. D. Sun, J. Xu and Q. Chen, Modeling of the evaporation and condensation phase-change problems with FLUENT, Numerical Heat Transfer, Part B: Fundamentals, 66 (4) (2014) 326–342.

    Article  Google Scholar 

  13. S. Khandekar, X. Cui and M. Groll, Thermal performance modeling of pulsating heat pipe by atificial neural network, Proceedings of 12th International Heat Pipe Conference, Moscow, Russia (2002) 215–219.

  14. H. Mroue, J. B. Ramos, L. C. Wrobel and H. Jouhara, Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger, Applied Thermal Engineering, 78 (2015) 339–350.

    Article  Google Scholar 

  15. Z. Mahboodi and H. Nemati, Experimental analysis of inclined heat pipe thermal resistancen, IJHT, 33 (4) (2015) 155–160.

    Article  Google Scholar 

  16. L. A. Shuoman, M. Abdelaziz and S. Abdel-Samad, Thermal performances and characteristics of thermosyphon heat pipe using alumina nanofluids, Heat Mass Transfer, 57 (8) (2021) 1275–1287.

    Article  Google Scholar 

  17. C. R. Kharangate and I. Mudawar, Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer, 108 (2017) 1164–1196.

    Article  Google Scholar 

  18. H. M. Maghrabie et al., Numerical simulation of heat pipes in different applications, International Journal of Thermofluids, 16 (2022) 100199.

    Article  Google Scholar 

  19. Jia-qiang E., Y. Li and J. Gong, Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis, J. Cent. South Univ. Technol., 18 (5) (2011) 1733–1737.

    Article  Google Scholar 

  20. R. V. Rao and K. C. More, Optimal design of the heat pipe using TLBO (teaching-learning-based optimization) algorithm, Energy, 80 (2015) 535–544.

    Article  Google Scholar 

  21. Z. Wang et al., Advanced big-data/machine-learning techniques for optimization and performance enhancement of the heat pipe technology–A review and prospective study, Applied Energy, 294 (2021) 116969.

    Article  Google Scholar 

  22. P. Gang, F. Huide, Z. Tao and J. Jie, A numerical and experimental study on a heat pipe PV/T system, Solar Energy, 85 (5) (2011) 911–921.

    Article  Google Scholar 

  23. J. S. Lee et al., 1-D modeling of two phase flow process in concentric annular heat pipe and experimental investigation, Processes, 10 (3) (2022) 493.

    Article  Google Scholar 

  24. M. Ghajar, J. Darabi and N. Crews, A hybrid CFD-mathematical model for simulation of a MEMS loop heat pipe for electronics cooling applications, J. Micromech. Microeng., 15 (2) (2005) 313–321.

    Article  Google Scholar 

  25. E. H. Song, K.-B. Lee and S.-H. Rhi, Thermal and flow simulation of concentric annular heat pipe with symmetric or asymmetric condenser, Energies, 14 (11) (2021) 3333.

    Article  Google Scholar 

  26. J. H. Ahn, S. H. Rhi, J. S. Lee and K. B. Kim, Thermal investigations of hemispherical shell vapor chamber heat sink, Energies, 15 (3) (2022) 1161.

    Article  Google Scholar 

  27. J. P. Longtin, B. Badran and F. M. Gerner, A one-dimensional model of a micro heat pipe during steady-state operation, Journal of Heat Transfer, 116 (3) (1994) 709–715.

    Article  Google Scholar 

  28. J. E. Hansel, R. A. Berry, D. Andrs, M. S. Kunick and R. C. Martineau, Sockeye: A one-dimensional, two-phase, compressible flow heat pipe application, Nuclear Technology, 207 (7) (2021) 1096–1117.

    Article  Google Scholar 

  29. A. G. Olabi, S. Haridy, E. Sayed, M. Radi, A. Alami, F. Zwayyed, T. Salameh and M. Abdelkareem, Implementation of artificial intelligence in modeling and control of heat pipes: A review, Energies, 16 (2) (2023) 760.

    Article  Google Scholar 

  30. V. M. Patel and H. B. Mehta, Thermal performance prediction models for a pulsating heat pipe using artificial neural network (ANN) and regression/correlation analysis (RCA), Sādhanā, 43 (11) (2018) 184.

    Article  Google Scholar 

  31. X. Wang, B. Li, Y. Yan, N. Gao and G. Chen, Predicting of thermal resistances of closed vertical meandering pulsating heat pipe using artificial neural network model, Applied Thermal Engineering, 149 (2019) 1134–1141.

    Article  Google Scholar 

  32. A. Faghri, M.-M. Chen and M. Morgan, Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons, Journal of Heat Transfer, 111 (3) (1989) 611–618.

    Article  Google Scholar 

  33. A. Brusly Solomon, K. Ramachandran, L. Godson Asirvatham and B. C. Pillai, Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid, International Journal of Heat and Mass Transfer, 75 (2014) 523–533.

    Article  Google Scholar 

  34. K. Ali, Development of an innovative cooling concept for turbofan engines, Master Thesis, KTH School of Industrial Engineering and Management, Sweden (2018).

    Google Scholar 

  35. SIEMENS, Simcenter Amesim software Library User’s Guides (ver. 2020.2), SIEMENS (2020).

  36. S. Arabnejad, R. Rasoulian, M. B. Shafii and Y. Saboohi, Numerical investigation of the performance of a u-shaped pulsating heat pipe, Heat Transfer Engineering, 31 (14) (2010) 1155–1164.

    Article  Google Scholar 

  37. A. R. Rohani and C. L. Tien, Steady two-dimensional heat and mass transfer in the vapor-gas region of a gas-loaded heat pipe, Journal of Heat Transfer, 95 (3) (1973) 377–382.

    Article  Google Scholar 

  38. C. Harley and A. Faghri, Two-dimensional rotating heat pipe analysis, Journal of Heat Transfer, 117 (1) (1995) 202–208.

    Article  Google Scholar 

  39. S. Annamalai and V. Ramalingam, Experimental investigation and CFD analysis of a air cooled condenser heat pipe, Therm. Sci., 15 (3) (2011) 759–772.

    Article  Google Scholar 

  40. N. Hasan, I. G. S. Tibba, F. T. Mosisa and A. Daniel, Ground tunnel as renewable energy utilization of ground energy as a source and sink for building heating and cooling, AIP Conference Proceedings, the 1st International Conference on Mechanical and Materials Science Engineering: Innovation and Research-2018, Maharashtra, India (2018).

  41. P. Liaw, Y. S. Chen, H. M. Shang, M. Shih, D. Doran and E. Steward, Numerical investigation of slag behavior with combustion/evaporation/breakup/VOF models for solid rocket motors, 31st Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, San Diego, CA, USA (1995).

  42. P. M. Knupp, Algebraic mesh quality metrics, SIAM J. Sci. Comput., 23 (1) (2001) 193–218.

    Article  MathSciNet  Google Scholar 

  43. B. Fadhl, L. C. Wrobel and H. Jouhara, Numerical modelling of the temperature distribution in a two-phase closed thermosyphon, Applied Thermal Engineering, 60 (1–2) (2013) 122–131.

    Article  Google Scholar 

  44. L. Asmaie, M. Haghshenasfard, A. Mehrabani-Zeinabad and M. Nasr Esfahany, Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling, Heat Mass Transfer, 49 (5) (2013) 667–678.

    Article  Google Scholar 

  45. J. Seo and J. Y. Lee, CFD Analysis and visualization of the two phase flow in a thermosyphon for a passive heat removal system of a nuclear power plant, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea (2016).

  46. Z. C. Zhao, Y. Zhang, Y. Zhang, Y. Zhou and H. Hu, Numerical study on the transient thermal performance of a two-phase closed thermosyphon, Energies, 11 (6) (2018) 1433.

    Article  Google Scholar 

  47. S. A. Kloczko, Experimental investigation and numerical simulation of loop thermosyphons, Master’s Theses, University of Connecticut, USA (2019).

    Google Scholar 

  48. A. A. B. Temimy and A. A. Abdulrasool, CFD modelling for flow and heat transfer in a closed thermosyphon charged with water - A new observation for the two phase interaction, IOP Conf. Ser.: Mater. Sci. Eng., 518 (3) (2019) 032053.

    Article  Google Scholar 

  49. A. M. Al Jubori and Q. A. Jawad, Computational evaluation of thermal behavior of a wickless heat pipe under various conditions, Case Studies in Thermal Engineering, 22 (2020) 100767.

    Article  Google Scholar 

  50. Ł. Adrian, S. Szufa, P. Piersa and F. Mikołajczyk, Numerical model of heat pipes as an optimization method of heat exchangers, Energies, 14 (22) (2021) 7647.

    Article  Google Scholar 

  51. H. Arat, O. Arslan, U. Ercetin and A. Akbulut, A comprehensive numerical investigation of unsteady-state two-phase flow in gravity assisted heat pipe enclosure, Thermal Science and Engineering Progress, 25 (2021) 100993.

    Article  Google Scholar 

  52. D. Xu, T. Chen and Y. Xuan, Thermo-hydrodynamics analysis of vapor–liquid two-phase flow in the flat-plate pulsating heat pipe, International Communications in Heat and Mass Transfer, 39 (2012) 504–508.

    Article  Google Scholar 

  53. Z. Lin, S. Wang, R. Shirakashi and L. W. Zhang, Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modeling, International Journal of Heat and Mass Transfer, 57 (2) (2013) 642–656.

    Article  Google Scholar 

  54. S. M. Pouryoussefi and Y. Zhang, Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe, Applied Thermal Engineering, 98 (2016) 617–627.

    Article  Google Scholar 

  55. J. Wang, H. Ma, Q. Zhu, D. Yiwei and K. Yue, Numerical and experimental investigation of pulsating heat pipes with corrugated configuration, Applied Thermal Engineering, 102 (2016) 158–166.

    Article  Google Scholar 

  56. E. Sedighi, A. Amarloo and B. Shafii, Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section, International Journal of Heat and Mass Transfer, 126 (2018) 431–441.

    Article  Google Scholar 

  57. D. T. Vo, H. T. Kim, J. Ko and W. K. Bang, An experiment and three-dimensional numerical simulation of pulsating heat pipes, International Journal of Heat and Mass Transfer, 150 (2020) 119317.

    Article  Google Scholar 

  58. M. Zufar, P. Gunnasegaran, K. C. Ng and H. Mehta, Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance, International Journal of Heat and Mass Transfer, 146 (2020) 118887.

    Article  Google Scholar 

  59. A. Mucci, F. K. Kwame, J. Chetwynd-Chatwin, M. Y. Ha and J. K. Min, Numerical investigation of flow instability and heat transfer characteristics inside pulsating heat pipes with different numbers of turns, International Journal of Heat and Mass Transfer, 169 (2021) 120934.

    Article  Google Scholar 

  60. N. Pooyoo, S. Kumar, J. Charoensuk and A. Suksangpanomrung, Numerical simulation of cylindrical heat pipe considering non-darcian transport for liquid flow inside wick and mass flow rate at liquid–vapor interface, International Journal of Heat and Mass Transfer, 70 (2014) 965–978.

    Article  Google Scholar 

  61. C. Yue, Q. Zhang, Z. Zhai and L. Ling, CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios, Applied Thermal Engineering, 139 (2018) 25–34.

    Article  Google Scholar 

  62. C. Kurt, Three-dimensional modeling of heat transfer and fluid flow in a flat-grooved heat pipe, Master Thesis, Bilkent University, Turkey (2019).

    Google Scholar 

  63. A. Wei, X. Ren, S. Lin and X. Zhang, CFD analysis on flow and heat transfer mechanism of a microchannel Ω-shape heat pipe under zero gravity condition, International Journal of Heat and Mass Transfer, 163 (2020) 120448.

    Article  Google Scholar 

  64. T. Brahim and A. Jemni, CFD analysis of hotspots copper metal foam flat heat pipe for electronic cooling applications, International Journal of Thermal Sciences, 159 (2021) 106583.

    Article  Google Scholar 

  65. W. Sanhan, K. Vafai, N. Kammuang-Lue, P. Terdtoon and P. Sakulchangsatjatai, Numerical simulation of flattened heat pipe with double heat sources for CPU and GPU cooling application in laptop computers, Journal of Computational Design and Engineering, 8 (2) (2021) 524–535.

    Article  Google Scholar 

  66. D. Jaksch, P. Givi, A. Daley and T. Thomas, Variational quantum algorithms for computational fluid dynamics, AIAA Journal, 61 (5) (2022) 1885–1894.

    Article  Google Scholar 

  67. G. Malinverno and J. B. Alberto, Quantum computing CFD simulations: myth and reality, Proceeding of 1st Spanish Fluid Mechanics Conference, Cadiz, Spain (2022).

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number: NRF-2022R1I1A3054588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Ho Rhi.

Additional information

Ji-Su Lee is Ph.D. student in Mechanical Engineering, Chung-Buk National University. He received his B.S. and M.S. degrees in Mechanical Engineering, CBNU. His research interest is heat and mass transfer in heat pipe.

Soek-Ho Rhi is a Professor in the School of Mechanical Engineering at Chungbuk National University. He received his Ph.D. in University of Ottawa. His research interests are heat pipe, thermoelectric conversion, heat transfer, heat exchanger etc.

Sun-Kook Kim is currently a manager of global products R&D team, LS Electronic Co., Ltd. He received B.S. and M.S. degrees in Mechanical Engineering from Chung-Buk National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JS., Rhi, SH. & Kim, SK. Modeling and simulation of heat pipes: review. J Mech Sci Technol 38, 2591–2612 (2024). https://doi.org/10.1007/s12206-024-0437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0437-x

Keywords

Navigation