Skip to main content
Log in

Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (C-RHVT) by using optimized turbulence model

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This research article demonstrates how using different turbulence models may affect the temperature detachment (the temperature diminution of cold air (∆Tc = Ti − Tc)) inside straight counter-flow Ranque-Hilsch Vortex Tube (RHVT). The code is utilized to find the optimized turbulence model for energy separation by comparison with the experimental data of the setup. To obtain the results with a minimum error, various turbulence models have been investigated in steady state and transient time-dependence modes. Results show that RNG k-ε turbulence model has the best correspondence with the obtained experimental data from the setup; therefore, by using a RNG k-ε turbulence model with respect to Finite Volume Method (FVM), all the computations have been carried out. Moreover, some geometric parameters are focused on the length of hot tube and number of nozzle intakes within divergent and convergent hot-tube. Numerical results present that there is an optimum angle for obtaining the highest refrigeration performance, and 2ο divergence is the optimal candidate under our numerical analysis conditions. Length of hot tube which exceeds a critical length has slight effect on the refrigeration capacity. The critical length is L = 166 mm in our study. Temperature reduction sensitivity can be reduced by increasing number of nozzles and maximum temperature reduction can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

CFD:

Computational fluid dynamic

FVM:

Finite volume method

RANS:

Reynolds average navier stokes

RNG:

Renormalized group

RHVT:

Ranque-Hilsch vortex tube

RH:

Ranque-Hilsch

RHE:

Ranque-Hilsch effect

LES:

Large eddy simulation

VT:

Vortex tube

∆T c = ( T in − T C):

Temperature difference between inlet and cold outlet

ΔT = ( T H − T C):

Temperature difference between hot and cold outlets

C p :

Specific heat at constant absolute pressure (J.kg−1.K−1)

C εi :

Coefficients (i = 1, 2) used in ε equation

C μ :

Constants in Eq. 14

C υ :

Constants in Eq. 13

D:

Diameter of vortex tube (mm)

\( \overset{\cdot }{m} \) :

Mass flow rate (kg.s−1)

d n :

Diameter of inlet nozzle (mm)

E:

Total energy (kJ)

G k :

Generation of turbulence kinetic energy

k:

Turbulence kinetic energy (m2.s−2)

Ke :

Thermal conductivity (W.m−1.K−1)

L:

Length (mm)

N:

Number of inlet nozzle

P:

Absolute pressure (pa)

Q c :

Cooling rate

Prt :

Turbulent Prandtl number

R:

Specific constant of an ideal gas (J/kgmol-K)

S :

Twice the strain rate tensor (s−1)

T:

Temperature (K)

ui :

Absolute fluid velocity component in i-direction (m/s)

YM :

Contribution of the fluctuating dilatation

Ma:

Mach number

W:

Mechanical energy

α k :

Inverse effective Prandtl numbers in Eq. 11

α ε :

Inverse effective Prandtl numbers in Eq. 12

δ ij :

Kronecker delta

τ:

Shear stress (N.m−2)

(τ ij)eff :

Deviatoric stress tensor (N.m−2)

ε :

Turbulence dissipation rate (m−2.s−3)

α :

Cold mass fraction

μ:

Dynamic viscosity (kg.m−1.s−1)

υ :

Kinematic viscosity (m2.s−1)

\( \widehat{\upsilon} \) :

Ratio of effective viscosity to the dynamic viscosity

γ:

Specific heat ratio

ρ:

Density (kg.m−3)

λ :

Pressure Loss Ratio

η 0, β, η :

Coefficients in RNG k- ε model

η is :

Isentropic efficiency

c:

Cold gas

eff:

Effective

h:

Hot gas

in:

Inlet gas

is:

isentropic

i, j, k:

Cartesian indicates

n:

nozzle

t:

turbulent

st:

static

a:

Atmospheric

References

  1. Ranque G (1933) Experiences sur la d’etente giratoire avec productions simultan\ ees d’un echappement d’air chaud et d’un echappement d’air froid. J Phys Radium 4:112–114

    Google Scholar 

  2. Hilsch R (1946) Die expansion von Gasen im Zentrifugalfeld als Kälteprozess. Zeitschrift für Naturforschung A 1:208–214

    Google Scholar 

  3. Nellis G, Klein S (2002) The application of vortex tubes to refrigeration cycles

  4. Rafiee SE, Sadeghiazad M (2017) Experimental and 3D CFD analysis on optimization of geometrical parameters of parallel vortex tube cyclone separator. Aerosp Sci Technol 63:110–122

    Article  Google Scholar 

  5. Dincer K, Avci A, Baskaya S, Berber A (2010) Experimental investigation and exergy analysis of the performance of a counter flow Ranque–Hilsch vortex tube with regard to nozzle cross-section areas. Int J Refrig 33:954–962

    Article  Google Scholar 

  6. Takahama H (1965) Energy Separation of Gas by Vortex Tube. Tran J Soc Mech Eng 68:1255–1263

    Google Scholar 

  7. Piralishvili SA, Fuzeeva A (2005) Hydraulic characteristics of Ranque-Hilsch energy separators. High Temp 43:900–907

    Article  Google Scholar 

  8. Shannak BA (2004) Temperature separation and friction losses in vortex tube. Heat Mass Transf 40:779–785

    Article  Google Scholar 

  9. Dincer K, Baskaya S, Uysal B (2008) Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque–Hilsch vortex tubes. Heat Mass Transf 44:367–373

    Article  Google Scholar 

  10. Nimbalkar SU, Muller MR (2009) An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube. Appl Therm Eng 29:509–514

    Article  Google Scholar 

  11. Saidi M, Valipour M (2003) Experimental modeling of vortex tube refrigerator. Appl Therm Eng 23:1971–1980

    Article  Google Scholar 

  12. Behera U, Paul P, Kasthurirengan S, Karunanithi R, Ram S, Dinesh K et al (2005) CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. Int J Heat Mass Transf 48:1961–1973

    Article  Google Scholar 

  13. Eiamsa-ard S, Wongcharee K, Promvonge P (2010) Experimental investigation on energy separation in a counter-flow Ranque–Hilsch vortex tube: Effect of cooling a hot tube. International Communications in Heat and Mass Transfer 37:156–162

    Article  Google Scholar 

  14. Pinar AM, Uluer O, Kırmaci V (2009) Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method. Int J Refrig 32:1487–1494

    Article  Google Scholar 

  15. Chang K, Li Q, Zhou G, Li Q (2011) Experimental investigation of vortex tube refrigerator with a divergent hot tube. Int J Refrig 34:322–327

    Article  Google Scholar 

  16. Takahama H, Yokosawa H (1981) An experimental study of the vortex tube-Where the vortex chamber includes a divergent tube. Nagoya University Faculty Engineering Memoirs 33:195–208

    Google Scholar 

  17. Uluer O, Kırmacı V, Ataş Ş (2009) Using the artificial neural network model for modeling the performance of the counter flow vortex tube. Expert Syst Appl 36:12256–12263

    Article  Google Scholar 

  18. Korkmaz ME, Gümüşel L, Markal B (2012) Using artificial neural network for predicting performance of the Ranque–Hilsch vortex tube. Int J Refrig 35:1690–1696

    Article  Google Scholar 

  19. Valipour MS, Niazi N (2011) Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. Int J Refrig 34:1109–1116

    Article  Google Scholar 

  20. Yilmaz M, Kaya M, Karagoz S, Erdogan S (2009) A review on design criteria for vortex tubes. Heat Mass Transf 45:613–632

    Article  Google Scholar 

  21. Kassner R, Knoernschild E (1948) Friction laws and energy transfer in circular flow. Part 1-The Law of Shear Stresses in Circular Flow. Part 2-Energy Transfer in Circular Flow and Possible Applications (Explanation of the Hilsch or Ranque Effect). Air Materiel Command Wright-Patterson AFB OH1948

  22. Elser K, Hoch M (1951) Das Verhalten verschiedener Gase und die Trennung von Gasgemischen in einem Wirbelrohr. Zeitschrift für Naturforschung A 6:25–31

    Article  Google Scholar 

  23. Deissler R, Perlmutter M (1960) Analysis of the flow and energy separation in a turbulent vortex. Int J Heat Mass Transf 1:173–191

    Article  Google Scholar 

  24. Reynolds AJ (1961) Energy flows in a vortex tube. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 12:343–357

    Article  MATH  Google Scholar 

  25. Erdélyi I (1962) Wirkung des Zentrifugalkraftfeldes auf den Wärmezustand der Gase, Erklärung der Ranque-Erscheinung. Forsch Ingenieurwes 28:181–186

    Article  Google Scholar 

  26. Sibulkin M (1962) Unsteady, viscous, circular flow part 3. application to the Ranque-Hilsch vortex tube. J Fluid Mech 12:269–293

    Article  MATH  Google Scholar 

  27. Gulyaev A (1965) Ranque effect at low temperatures. J Eng Phys Thermophys 9:242–244

    Article  Google Scholar 

  28. Bruun H (1969) Experimental investigation of the energy separation in vortex tubes. J Mech Eng Sci 11:567–582

    Article  Google Scholar 

  29. Linderstrøm-Lang C (1971) The three-dimensional distributions of tangential velocity and total-temperature in vortex tubes. J Fluid Mech 45:161–187

    Article  MATH  Google Scholar 

  30. Yokosawa H (1981) Energy Separation in Yerfei Tubes with a Diwergent Chamber. Taper 8:1–72

    Google Scholar 

  31. Kurosaka M (1982) Acoustic streaming in swirling flow and the Ranque—Hilsch (vortex-tube) effect. J Fluid Mech 124:139–172

    Article  Google Scholar 

  32. Stephan K, Lin S, Durst M, Huang F, Seher D (1983) An investigation of energy separation in a vortex tube. Int J Heat Mass Transf 26:341–348

    Article  Google Scholar 

  33. Stephan K, Lin S, Durst M, Huang F, Seher D (1984) A similarity relation for energy separation in a vortex tube. Int J Heat Mass Transf 27:911–920

    Article  Google Scholar 

  34. Eckert E (1986) Energy separation in fluid streams. International Communications in Heat and Mass Transfer 13:127–143

    Article  Google Scholar 

  35. Balmer R (1988) Pressure driven Ranque Hilsch temperature separation in liquids. J Fluids Eng 110:161–164

    Article  Google Scholar 

  36. Ahlborn B, Keller J, Staudt R, Treitz G, Rebhan E (1994) Limits of temperature separation in a vortex tube. J Phys D Appl Phys 27:480

    Article  Google Scholar 

  37. Ahlborn B, Groves S (1997) Secondary flow in a vortex tube. Fluid Dynamics Research 21:73–86

    Article  Google Scholar 

  38. Gutsol A (1997) The ranque effect. Physics-Uspekhi 40:639–658

    Article  Google Scholar 

  39. Gutsol A, Bakken J (1998) A new vortex method of plasma insulation and explanation of the Ranque effect. J Phys D Appl Phys 31:704

    Article  Google Scholar 

  40. Fröhlingsdorf W, Unger H (1999) Numerical investigations of the compressible flow and the energy separation in the Ranque–Hilsch vortex tube. Int J Heat Mass Transf 42:415–422

    Article  MATH  Google Scholar 

  41. Mischner J, Bespalov V (2002) Zur Entropieproduktion im Ranque–Hilsch–Rohr. Forsch Ingenieurwes 67:1–10

    Article  Google Scholar 

  42. Aljuwayhel N, Nellis G, Klein S (2005) Parametric and internal study of the vortex tube using a CFD model. Int J Refrig 28:442–450

    Article  Google Scholar 

  43. Gao C, Bosschaart K, Zeegers J, De Waele A (2005) Experimental study on a simple Ranque–Hilsch vortex tube. Cryogenics 45:173–183

    Article  Google Scholar 

  44. Piralishvili SA, Fuzeeva A (2006) Similarity of the energy-separation process in vortex Ranque tubes. J Eng Phys Thermophys 79:27–32

    Article  Google Scholar 

  45. Skye H, Nellis G, Klein S (2006) Comparison of CFD analysis to empirical data in a commercial vortex tube. Int J Refrig 29:71–80

    Article  Google Scholar 

  46. Ui-Hyun J, Lakshmana Gowda BHL (2006) Experimental and numerical studies in a vortex tube. J Mech Sci Technol 20(3):418–425

    Article  Google Scholar 

  47. Aydın O, Baki M (2006) An experimental study on the design parameters of a counterflow vortex tube. Energy 31:2763–2772

    Article  Google Scholar 

  48. Eiamsa-ard S, Promvonge P (2007) Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube. Int J Heat Mass Transf 50:821–832

    Article  MATH  Google Scholar 

  49. Eiamsa-ard S, Promvonge P (2008) Review of Ranque–Hilsch effects in vortex tubes. Renew Sust Energ Rev 12:1822–1842

    Article  MATH  Google Scholar 

  50. She Z-S, Jackson E, Orszag SA (1990) Intermittant Vortex Structures in Homogeneous Isotropic Turbulence. Nature 344:226

    Article  Google Scholar 

  51. Xue Y, Arjomandi M (2008) The effect of vortex angle on the efficiency of the Ranque–Hilsch vortex tube. Exp Thermal Fluid Sci 33:54–57

    Article  Google Scholar 

  52. Secchiaroli A, Ricci R, Montelpare S, D’Alessandro V (2009) Numerical simulation of turbulent flow in a Ranque–Hilsch vortex tube. Int J Heat Mass Transf 52:5496–5511

    Article  MATH  Google Scholar 

  53. Zin K, Hansske A, Ziegler F (2010) Modeling and optimization of the vortex tube with computational fluid dynamic analysis. Energy Research Journal 1:193–196

    Article  Google Scholar 

  54. Xue Y, Arjomandi M, Kelso R (2010) A critical review of temperature separation in a vortex tube. Exp Thermal Fluid Sci 34:1367–1374

    Article  Google Scholar 

  55. Xue Y, Arjomandi M, Kelso R (2013) Experimental study of the thermal separation in a vortex tube. Exp Thermal Fluid Sci 46:175–182

    Article  Google Scholar 

  56. Liu X, Liu Z (2014) Investigation of the energy separation effect and flow mechanism inside a vortex tube. Appl Therm Eng 67:494–506

    Article  Google Scholar 

  57. Xue Y, Arjomandi M, Kelso R (2014) Energy analysis within a vortex tube. Exp Thermal Fluid Sci 52:139–145

    Article  Google Scholar 

  58. Kobiela B (2014) Wärmeübertragung in einer Zyklonkühlkammer einer Gasturbinenschaufel: Verlag Dr. Hut

  59. Thakare HR, Monde A, Parekh AD (2015) Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renew Sust Energ Rev 52:1043–1071

    Article  Google Scholar 

  60. Manimaran R (2016) Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio. Energy 107:17–28

    Article  Google Scholar 

  61. Sharma TK, Rao GAP, Murthy KM (2017) Numerical Analysis of a Vortex Tube: A Review. Archives of Computational Methods in Engineering 24:251–280

    Article  MATH  Google Scholar 

  62. Smith E-a, Pongjet P (2006) Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube. Journal of Zhejiang University-SCIENCE A 7:1406–1415

    Article  MATH  Google Scholar 

  63. Farouk T, Farouk B (2007) Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. Int J Heat Mass Transf 50:4724–4735

    Article  MATH  Google Scholar 

  64. Farouk T, Farouk B, Gutsol A (2009) Simulation of gas species and temperature separation in the counter-flow Ranque–Hilsch vortex tube using the large eddy simulation technique. Int J Heat Mass Transf 52:3320–3333

    Article  MATH  Google Scholar 

  65. Lai J, Yang C (1997) Numerical simulation of turbulence suppression: Comparisons of the performance of four k-ϵ turbulence models. Int J Heat Fluid Flow 18:575–584

    Article  Google Scholar 

  66. Eiamsa-ard S, Promvonge P (2008) Numerical simulation of flow field and temperature separation in a vortex tube. International Communications in Heat and Mass Transfer 35:937–947

    Article  MATH  Google Scholar 

  67. Baghdad M, Ouadha A, Imine O, Addad Y (2011) Numerical study of energy separation in a vortex tube with different RANS models. Int J Therm Sci 50:2377–2385

    Article  Google Scholar 

  68. Dutta T, Sinhamahapatra K, Bandyopdhyay S (2010) Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. Int J Refrig 33:783–792

    Article  Google Scholar 

  69. Kundu PK, Cohen IM, Dowling D (2008) Fluid Mechanics, 4th ed. Elsevier, Oxford

    Google Scholar 

  70. Fluent I (2006) FLUENT 6.3 user’s guide. Fluent documentation

  71. Choudhury D (1993) Introduction to the renormalization group method and turbulence modeling: Fluent Incorporated

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adib Bazgir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazgir, A., Khosravi-Nikou, M. & Heydari, A. Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (C-RHVT) by using optimized turbulence model. Heat Mass Transfer 55, 2559–2591 (2019). https://doi.org/10.1007/s00231-019-02578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02578-1

Navigation