Skip to main content
Log in

Investigation of a vortex tube using three different RANS-based turbulence models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main objective of this study is to capture the function of temperature separation inside a vortex tube (VT), firstly, via testing it at different inlet pressures (4, 5, 6, and 7 bar) and then examining the best performance of the VT through computational fluid dynamics (CFD) along with three various Reynolds-averaged Navier–Stokes-based turbulence models, i.e., standard \(k - \varepsilon\), standard \(k - \omega\), and shear-stress transport \(k - \omega\). Moreover, a comparison between CFD outputs and experimental data, at the inlet pressure of 7 bar, demonstrates that the standard \(k - \varepsilon\) model outperforms other turbulence models utilized in this study. The internal flow behavior is also examined for further illustration of its features via CFD. It is reported that a convergent–divergent virtual duct is formed through the streamline at the region wherein injected flow (from the inlet nozzles into the vortex chamber) swirls toward the cold orifice, resulting in an expansion. Consequently, the Mach number goes above one and temperature drops. Thus, the sudden expansions alongside free and forced vortices as well as the secondary circulation flow have a significant impact on energy separation in the VT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(A\) :

Area (m2)

\(C_{p}\) :

Constant pressure-specific heat capacity of air at room temperature (J kg−1 K−1)

\(c\) :

Speed of sound (m s−1)

\(E_{\text{ij}}\) :

Mean strain rate tensor

\(h\) :

Enthalpy for unit mass (J kg−1)

\(h_{0}\) :

Total enthalpy for unit mass (J kg−1)

\(K\) :

Thermal conductivity (W m−1 K−1)

\(k\) :

Turbulence kinetic energy (m2 s−3)

\(M\) :

Mach number

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(p\) :

Pressure (pa)

\(P_{0}\) :

Total pressure (Pa)

\({ \Pr }\) :

Prandtl number

\(R\) :

Specific constant of an ideal gas (J kg−1 K−1)

\(T\) :

Static temperature (K)

\(T_{0}\) :

Total temperature (K)

\(U_{\text{R}}\) :

Uncertainty

\(u\) :

Mass-averaged velocity (m s−1)

\(u^{{\prime }}\) :

Fluctuating velocity components (m s−1)

\(c_{{1\upvarepsilon}} , \, c_{{2\upvarepsilon}} , \, c_{\upmu} , \, \sigma_{k} , \, \sigma_{\upvarepsilon}\) :

Constants of \(k - \varepsilon\) model

\(\alpha , \, \alpha^{*} , \, \beta , \, \beta^{*} , \, \sigma , \, \sigma^{*} , \, \beta_{0}\) :

Constants of standard \(k - \omega\) model

\(\alpha_{1} , \, \alpha_{2} , \, \beta_{1} , \, \beta_{2} , \, \beta^{*} , \, \sigma_{{{k}1}} , \, \sigma_{{{k}1}} , \, \sigma_{{\upomega1}} , \, \sigma_{{\upomega2}}\) :

Constants of SST \(k - \omega\) model

\(\alpha_{k}\) :

Inverse effective Prandtl number for \(\varepsilon\) equation

\(\alpha_{\upvarepsilon}\) :

Inverse effective Prandtl number for \(k\) equation

\(\xi\) :

Cold gas mass fraction

\(\tau\) :

Stress tensor

\(\rho\) :

Density (kg m−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\nu_{\text{t}}\) :

Kinematic turbulence viscosity (m2 s−1)

\(\varepsilon\) :

Turbulence dissipation rate (m2 s−3)

\(\omega\) :

Angular velocity (s−1)

\(\varOmega\) :

Absolute value of vorticity

c:

Cold stream

h:

Hot stream

in:

Inlet

eff:

Effective

0:

Total

t:

Turbulence

i, j, k:

Cartesian indices

References

  1. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134:2295–303.

    Article  CAS  Google Scholar 

  2. Mohd-Ghazali N, Estellé P, Halelfadl S, Maré T, Siong TC, Abidin U. Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids. J Therm Anal Calorim. 2019;138:937–45.

    Article  CAS  Google Scholar 

  3. Sakhri N, Menni Y, Chamkha AJ, Lorenzini E, Kaid N, Ameur H, et al. Study of heat and mass transfer through an earth to air heat exchanger equipped with fan in South West of Algeria. Int J Heat Technol. 2019;37:689–95.

    Article  Google Scholar 

  4. Menni Y, Azzi A, Zidani C. Use of waisted triangular-shaped baffles to enhance heat transfer in a constant temperature-surfaced rectangular channel. J Eng Sci Technol. 2017;12:3251–73.

    Google Scholar 

  5. Menni Y, Chamkha AJ, Azzi A, Zidani C, Benyoucef B. Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers n.d.

  6. Menni Y, Azzi A, Chamkha AJ. Developing heat transfer in a solar air channel with arc-shaped baffles: effect of baffle attack angle. J New Technol Mater. 2018;8:58–67.

    Article  CAS  Google Scholar 

  7. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. J Therm Anal Calorim. 2019;135:1951–76.

    Article  CAS  Google Scholar 

  8. Menni Y, Azzi A, Chamkha AJ, Harmand S. Analysis of fluid dynamics and heat transfer in a rectangular duct with staggered baffles. J Appl Comput Mech. 2019;5:231–48.

    Google Scholar 

  9. Menni Y, Chamkha AJ, Azzi A. Fluid flow and heat transfer over staggered ‘+’ shaped obstacles. J Appl Comput Mech. 2020. https://doi.org/10.22055/jacm.2018.26277.1316.

    Article  Google Scholar 

  10. Menni Y, Chamkha A, Lorenzini G, Benyoucef B. Computational fluid dynamics based numerical simulation of thermal and thermo-hydraulic performance of a solar air heater channel having various ribs on absorber plates. Math Model Eng Probl. 2019;6:170–4.

    Article  Google Scholar 

  11. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135:1611–5.

    Article  Google Scholar 

  12. Menni Y, Chamkha AJ, Azzi A. Nanofluid flow in complex geometries. A review. J Nanofluids. 2019;8:893–916.

    Article  Google Scholar 

  13. Menni Y, Chamkha AJ, Lorenzini G, Kaid N, Ameur H, Bensafi M. Advances of nanofluids in solar collectors—a review of numerical studies advances of nanofluids in solar collectors—a review of numerical studies. Math Model Eng Probl. 2019;6:415–27.

    Article  Google Scholar 

  14. Menni Y, Azzi A, Didi F, Harmand S. Computational fluid dynamical analysis of new obstacle design and its impact on the heat transfer enhancement in a specific type of air flow geometry. Comput Therm Sci Int J. 2018;10.

  15. Menni Y, Azzi A, Chamkha AJ, Harmand S. Effect of wall-mounted V-baffle position in a turbulent flow through a channel: analysis of best configuration for optimal heat transfer. Int J Numer Methods Heat Fluid Flow. 2018;29:3908–3937. https://doi.org/10.1108/HFF-06-2018-0270.

    Article  Google Scholar 

  16. Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Heat transfer in air flow past a bottom channel wall-attached diamond-shaped baffle—using a CFD technique. Periodica Polytech Mech Eng. 2019;63:100–12.

    Article  Google Scholar 

  17. Menni Y, Chamkha A, Zidani C, Benyoucef B. Heat and nanofluid transfer through baffled channels in different outlet models. Math Model Eng Probl. 2019;6:21–8.

    Article  Google Scholar 

  18. Ranque GJ. Experiences sur la detente giratoire avec productions simultanes d’un echappment d’air chand et d’un echappment d’air froid. J Phys Radium. 1933;4:112–4.

    Google Scholar 

  19. Hilsch R. The use of the expansion of gases in a centrifugal field as cooling process. Rev Sci Instrum. 1947;18:108–13.

    Article  CAS  Google Scholar 

  20. Ahlborn B, Groves S. Secondary flow in a vortex tube. Fluid Dyn Res. 1997;21:73.

    Article  Google Scholar 

  21. C. Gao. Experimental study on the Ranque–Hilsch vortex tube. Technische Universiteit Eindhoven; 2005.

  22. Xue Y, Arjomandi M, Kelso R. Experimental validation of the proposed flow behaviour. Int J Refrig. 2013. https://doi.org/10.1016/j.ijrefrig.2013.04.016.

    Article  Google Scholar 

  23. Farzaneh-Gord M, Sadi M. Improving vortex tube performance based on vortex generator design. Energy. 2014;72:492–500.

    Article  Google Scholar 

  24. Li N, Zeng ZY, Wang Z, Han XH, Chen GM. Experimental study of the energy separation in a vortex tube. Int J Refrig. 2015. https://doi.org/10.1016/j.ijrefrig.2015.03.011.

    Article  Google Scholar 

  25. Cebeci I, Kirmaci V, Topcuoglu U. The effects of orifice nozzle number and nozzle made of polyamide plastic and aluminum with different inlet pressures on heating and cooling performance of counter flow Ranque–Hılsch vortex tubes: an experimental investigation. Int J Refrig. 2016. https://doi.org/10.1016/j.ijrefrig.2016.07.013.

    Article  Google Scholar 

  26. Attalla M, Ahmed H, Ahmed MS, El-wafa AA. Experimental investigation for thermal performance of series and parallel Ranque–Hilsch vortex tube systems. Appl Therm Eng. 2017;123:327–39. https://doi.org/10.1016/j.applthermaleng.2017.05.084.

    Article  Google Scholar 

  27. Hamdan MO, Al-omari SB, Oweimer AS. Experimental study of vortex tube energy separation under different tube design. Exp Therm Fluid Sci. 2018;91:306–11. https://doi.org/10.1016/j.expthermflusci.2017.10.034.

    Article  Google Scholar 

  28. Majidi D, Alighardashi H, Farhadi F. Best vortex tube cascade for highest thermal separation. Int J Refrig. 2017. https://doi.org/10.1016/j.ijrefrig.2017.10.006.

    Article  Google Scholar 

  29. Kaya H, Günver F, Uluer O, Kirmaci V. Experimental study about performance analysis of parallel connected Ranque–Hilsch counter flow vortex tubes with different nozzle numbers and materials. J Heat Transf. 2018;140:112801. https://doi.org/10.1115/1.4040707.

    Article  CAS  Google Scholar 

  30. Behera U, Paul PJ, Kasthurirengan S, Karunanithi R, Ram SN, Dinesh K, et al. CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. Int J Heat Mass Transf. 2005;48:1961–73.

    Article  Google Scholar 

  31. Skye HM, Nellis GF, Klein SA. Comparison of CFD analysis to empirical data in a commercial vortex tube. Int J Refrig. 2006;29:71–80.

    Article  CAS  Google Scholar 

  32. Exair. Vortex Tubes and Spot Cooling Products. n.d.

  33. Oliver R. Numerical prediction of primary and secondary flows in a Ranque–Hilsch vortex tube. Dublin Institute of Technology; 2008.

  34. Dutta T, Sinhamahapatra KP, Bandyopdhyay SS. Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. Int J Refrig. 2010;33:783–92. https://doi.org/10.1016/j.ijrefrig.2009.12.014.

    Article  Google Scholar 

  35. Bovand M, Valipour MS, Eiamsa-ard S, Tamayol A. Numerical analysis for curved vortex tube optimization. Int Commun Heat Mass Transf. 2014;50:98–107.

    Article  Google Scholar 

  36. Liu X, Liu Z. Investigation of the energy separation effect and fl ow mechanism inside a vortex tube. Appl Therm Eng. 2014;67:494–506. https://doi.org/10.1016/j.applthermaleng.2014.03.071.

    Article  Google Scholar 

  37. Bidwaik AS. To study the effects of design parameters on vortex tube with CFD analysis. Int J Eng Res Technol (IJERT). 2015;4:90–5.

    Google Scholar 

  38. Kandil HA, Abdelghany ST. Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube. Energy. 2015;84:207–18. https://doi.org/10.1016/j.energy.2015.02.089.

    Article  Google Scholar 

  39. Manimaran R. Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio. Energy. 2016;107:17–28.

    Article  Google Scholar 

  40. Bej N, Sinhamahapatra KP. Numerical analysis on the heat and work transfer due to shear in a hot cascade Ranque–Hilsch vortex tube. Int J Refrig. 2016;68:161–76.

    Article  Google Scholar 

  41. Bianco V, Khait A, Noskov A, Alekhin V. A comparison of the application of RSM and LES turbulence models in the numerical simulation of thermal and flow patterns in a double-circuit Ranque–Hilsch vortex tube. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.06.095.

    Article  Google Scholar 

  42. Zhang B, Guo X, Yang Z. Analysis on the fluid flow in vortex tube with vortex periodical oscillation characteristics. Int J Heat Mass Transf. 2016;103:1166–75. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.063.

    Article  Google Scholar 

  43. Moraveji A, Toghraie D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. Int J Heat Mass Transf. 2017;113:432–43. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.095.

    Article  CAS  Google Scholar 

  44. Thakare HR, Parekh AD. Experimental investigation and CFD analysis of Ranque–Hilsch vortex tube. Energy. 2017. https://doi.org/10.1016/j.energy.2017.05.070.

    Article  Google Scholar 

  45. Chen J, Zeng R, Zhang W, Qiu L, Zhang X. Numerical analysis of energy separation in Ranque–Hilsch vortex tube with gaseous hydrogen using real gas model. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.05.017.

    Article  Google Scholar 

  46. Shamsoddini R, Abolpour B. A geometric model for a vortex tube based on numerical analysis to reduce the effect of nozzle number. Int J Refrig. 2018. https://doi.org/10.1016/j.ijrefrig.2018.07.027.

    Article  Google Scholar 

  47. Bazgir A, Nabhani N, Eiamsa-ard S. Numerical analysis of flow and thermal patterns in a double-pipe Ranque–Hilsch vortex tube: influence of cooling a hot-tube. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.08.043.

    Article  Google Scholar 

  48. Holman JP, Gajda WJ. Experimental methods for engineers, vol. 7. New York: McGraw-Hill; 2001.

    Google Scholar 

  49. Moradicheghamahi J, Sadeghiseraji J, Jahangiri M. Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery. Int J Mech Sci. 2018;150:393–403. https://doi.org/10.1016/j.ijmecsci.2018.10.046.

    Article  Google Scholar 

  50. Wilcox DC. Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA J. 1993;31:1414–21.

    Article  CAS  Google Scholar 

  51. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32:1598–605.

    Article  Google Scholar 

  52. ANSYS FLUENT User’s Guide. Modeling Turbulence; 2013.

  53. Anderson JD. Modern compressible flow: with historical perspective, vol. 12. New York: McGraw-Hill; 1990.

    Google Scholar 

Download references

Acknowledgements

Authors are sincerely grateful to Dr. Mohsen Davazdah Emami, the associate professor in Mechanical Engineering, and Alireza Amiriyoon, the Thermodynamic and Heat Transfer laboratory expert, at the Department of Mechanical Engineering, Isfahan University of Technology, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Sedaghatkish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 6.

Table 6 Experimental data

Appendix 2

See Fig. 19.

Fig. 19
figure 19

Compressor and tank

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghiseraji, J., Moradicheghamahi, J. & Sedaghatkish, A. Investigation of a vortex tube using three different RANS-based turbulence models. J Therm Anal Calorim 143, 4039–4056 (2021). https://doi.org/10.1007/s10973-020-09368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09368-6

Keywords

Navigation