Skip to main content
Log in

Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, fluid flow of the Al2O3/ethylene glycol (EG) nanofluid in a corrugated tube fitted with twisted tapes were experimentally studied under turbulent flow conditions. The experiments with different twists ratio and different nanofluid concentration were performed under similar operation condition. The investigated ranges are (1) three different Al2O3 concentrations: 0.5, 1 and 1.5 % by volume (2) three different twist ratios of twisted tape: y/w = 2, 3.6 and 5 and (3) Reynolds number from 6000 to 30,000. Regarding the experimental data, utilization of twists together with nanofluids tends to increase heat transfer and friction factor as compared with the base fluid. In addition, heat transfer performances were weakened by using for high nanoparticle concentration. The thermal performances of the heat exchanger with nanofluid and twisted tapes were evaluated for the assessment of overall improvement in thermal behavior. Over the range studied, the maximum thermal performance factor 4.2 is found with the use of Al2O3/EG nanofluid at concentration of 0.5 % by volume in corrugated tube together with twisted tape at twist ratio of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cp :

Specific heat at constant pressure (J kg−1 K−1)

di :

Inside diameter of the test tube (m)

e:

Helical corrugation depth

f:

Friction factor

h:

Heat transfer coefficient (W m−2 K−1)

k:

Thermal conductivity of fluid (W m−1 K−1)

L:

Length of the test section (m)

n:

Shape factor

Nu:

Nusselt number

Re:

Reynolds number

t:

Temperature (°C)

TR:

Twist ratio

w:

Tape width (m)

y:

Tape pitch length (m)

d:

Tape thickness (m)

ρ:

Fluid density (kg m−3)

μ:

Fluid dynamic viscosity (kg s−1 m−1)

η:

Thermal enhancement index

∆:

Bruggeman model parameter

Ψ:

Sphericity

b:

Base fluid

nf:

Nanofluid

np:

Nanoparticle

NE:

Non enhanced

E:

Enhanced

References

  1. Bergles AE (1985) Techniques to augment heat transfer. In: Roshenow WM et al (eds) Hand book of heat transfer applications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  2. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nano-fluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  3. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059

    Article  Google Scholar 

  4. Choi SUS (1995) Development and applications of non-Newtonian flows. ASME, New York

    Google Scholar 

  5. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151

    Article  Google Scholar 

  6. Eastman JA, Choi SUS, Li S, Thompson LJ (1997) Enhanced thermal conductivity through the development of nanofluids. In: Proceedings of the symposium on nanophase and nanocomposite materials II, vol 457, Materials Research Society, USA, pp 3–11

  7. Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu–water nanofluid. Sci China E 45:408

    Google Scholar 

  8. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. ASME J Heat Transf 125:151

    Article  Google Scholar 

  9. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181

    Article  Google Scholar 

  10. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  11. Heris SZ, Etemad SG, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33:529

    Article  Google Scholar 

  12. Heris SZ, Esfahany MN, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluids Flow 28(2):203

    Article  Google Scholar 

  13. Santra AK, Sen S, Chakraborty N (2008) Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid. Int J Therm Sci 47:1113–1122

    Article  Google Scholar 

  14. Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3–water nanofluid for electronic liquid cooling system. Appl Therm Eng 28:1501

    Article  Google Scholar 

  15. Chun BH, Kang HU, Kim SH (2008) Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J Chem Eng 25(5):966–971

    Article  Google Scholar 

  16. Duangthongsuk W, Wongwises S (2008) Effect of thermophysical properties models on the prediction of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Transf 35:1320

    Article  Google Scholar 

  17. Santra AK, Sen S, Chakraborty N (2009) Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. Int J Therm Sci 48:391–400

    Article  Google Scholar 

  18. Namburu PK, Das DK, Tanguturi KM, Vajjha RS (2009) Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int J Therm Sci 48:290–302

    Article  Google Scholar 

  19. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D (2009) Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci 48:1486–1493

    Article  Google Scholar 

  20. Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int Commun Heat Mass Transf 53:334–344

    Article  Google Scholar 

  21. Hojjat M, Etemad SGh, Bagheri R, Thibault J (2011) Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. Int J Therm Sci 50:525–531

    Article  Google Scholar 

  22. Hojjat M, Etemad SG, Bagheri SGR, Thibault J (2011) Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf 38:144–148

    Article  Google Scholar 

  23. Heidary H, Kermani MJ (2012) Heat transfer enhancement in a channel with block(s) effect and utilizing nano-fluid. Int J Therm Sci 57:163–171

    Article  Google Scholar 

  24. Pelević N, van der Meer TH (2012) Numerical investigation of the effective thermal conductivity of nano-fluids using the lattice Boltzmann model. Int J Therm Sci 62:154–159

    Article  Google Scholar 

  25. Fakoor-Pakdaman M, Akhavan-Behabadi MA, Razi P (2013) An empirical study on the pressure drop characteristics of nanofluid flow inside helically coiled tubes. Int J Therm Sci 65:206–213

    Article  Google Scholar 

  26. Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  MATH  Google Scholar 

  27. Godson L, Raja B, Mohan Lal D, Wongwises S (2009) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14:629–641

    Article  Google Scholar 

  28. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S (2008) Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci 47:103–111

    Article  Google Scholar 

  29. Chang SW, Jan YJ, Liou JS (2007) Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape. Int J Therm Sci 46:506–518

    Article  Google Scholar 

  30. Wongcharee K, Eiamsa-ard S (2011) Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes. Int Commun Heat Mass Transf 38:348–352

    Article  Google Scholar 

  31. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes: part I—laminar flows. Trans ASME J Heat Transf 115:881–889

    Article  Google Scholar 

  32. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes, part II: transition and turbulent flows. Trans ASME J Heat Transf 115:890–896

    Article  Google Scholar 

  33. Sarma PK, Subrahmanyam T, Kishore PS, DharmaRao V, Kakac S (2002) A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow. Int J Therm Sci 41:955–960

    Article  Google Scholar 

  34. Sarma PK, Kishore PS, DharmaRao V, Subrahmanyam T (2005) A combined approach to predict friction coefficients a d convective heat transfer characteristics in A tube with twisted tape inserts for a wide range of Re and Pr. Int J Therm Sci 44:393–398

    Article  Google Scholar 

  35. Naphon P (2006) Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. Int Commun Heat Mass Transf 33:166–175

    Article  Google Scholar 

  36. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P (2010) Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. Int Commun Heat Mass Transf 37:39–46

    Article  Google Scholar 

  37. Eiamsa-ard S, Thianpong C, Eiamsa-ard P (2010) Turbulent heat transfer enhancement by counter/co-swirling flowin a tube fitted with twin twisted tapes. Exp Therm Fluid Sci 34:53–62

    Article  Google Scholar 

  38. Eiamsa-ard S, Seemawute P, Wongcharee K (2010) Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows. Exp Therm Fluid Sci 34:711–719

    Article  Google Scholar 

  39. Eiamsa-ard S, Promvonge P (2010) Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. Int J Heat Mass Transf 53:1364–1372

    Article  Google Scholar 

  40. Guo J, Fan A, Zhang X, Liu W (2011) A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. Int J Therm Sci 50:1263–1270

    Article  Google Scholar 

  41. Zhang X, Liu Z, Liu W (2012) Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes. Int J Therm Sci 58:157–167

    Article  Google Scholar 

  42. SyamSundar L, Sharma KV (2010) Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf 53:1409–1416

    Article  Google Scholar 

  43. Suresh KP, Venkitaraj P, Selvakumar M (2012) Chandrasekar, A comparison of thermal characteristics of Al2O3/water and CuO/water nanofluids in transition flow through a straight circular duct fitted with helical screw tape inserts. Exp Therm Fluid Sci 39:37–44

    Article  Google Scholar 

  44. Wongcharee K, Eiamsa-ard S (2012) Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf 39:251–257

    Article  Google Scholar 

  45. Maxwell JC (1954) Treatise on electricity and magnetism. Dover, New York

    MATH  Google Scholar 

  46. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. I&EC Fundam 1(3):187

    Article  Google Scholar 

  47. Yu W, Choi SUS (2003) The role of interfacial layer in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticles Res 5:167–171

    Article  Google Scholar 

  48. Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Ann Phys 14:636

    Article  Google Scholar 

  49. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev 76:061203

    Google Scholar 

  50. Einstein A (1911) Berichtigung zu meiner Arbeit: eine neue Bestimmung der Molekuldimensionen. Ann Phys 34:591

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mohammadiun.

Appendix: Uncertainty analysis

Appendix: Uncertainty analysis

The uncertainty table for different instruments used in experiment is given in Table 2. The maximum possible error for the parameters involved in the analysis are estimated and summarized in Table 3.

Table 2 Uncertainties of instruments and properties
Table 3 Uncertainties of parameters and variables

Reynolds number, Re:

$$\text{Re} = \frac{{4\dot{m}}}{\pi D\mu },\frac{{U_{\text{Re}} }}{\text{Re}} = \left( {\left( {\frac{{U_{{\dot{m}}} }}{{\dot{m}}}} \right)^{2} + \left( {\frac{{U_{\mu } }}{\mu }} \right)^{2} } \right)^{1/2} = 1.4\;\%$$

Heat transfer rate of the nanofluid:

$$Q_{nf} = \dot{m}_{nf} cp_{nf} (T_{out} - T_{in} )_{nf} ,\quad \frac{{U_{{Q_{nf} }} }}{{Q_{nf} }} = \left( {\left( {\frac{{U_{{\dot{m}_{nf} }} }}{{\dot{m}_{nf} }}} \right)^{{^{2} }} + \left( {\frac{{U_{{cp_{nf} }} }}{{cp_{nf} }}} \right)^{2} + \left( {\frac{{U_{{T_{out} - T_{in} }} }}{{T_{out} - T_{in} }}} \right)^{2} } \right)^{1/2} = 0.17\;\%$$

Heat transfer rate of the water:

$$Q_{w} = \dot{m}_{w} cp_{w} (T_{out} - T_{in} )_{w} ,\quad \frac{{U_{{Q_{w} }} }}{{Q_{w} }} = \left( {\left( {\frac{{U_{w} }}{{\dot{m}_{w} }}} \right)^{2} + \left( {\frac{{U_{{cp_{w} }} }}{{cp_{w} }}} \right)^{2} + \left( {\frac{{U_{{T_{out} - T_{in} }} }}{{T_{out} - T_{in} }}} \right)^{2} } \right)^{1/2} = 0.5\;\%$$

Nusselt number, Nu:

$$Nu = \frac{hD}{K},\frac{{U_{Nu} }}{Nu} = \left( {\left( {\frac{{U_{h} }}{h}} \right)^{2} + \left( {\frac{{U_{K} }}{K}} \right)^{2} } \right)^{1/2} = 0.26\;\%$$

Friction factor, f:

$$f = \frac{\varDelta P}{{\left( \frac{l}{D} \right)\left( {\frac{{\rho V^{2} }}{2}} \right)}},U_{f} = \left( {\left( {\frac{{U_{\varDelta P} }}{\varDelta P}} \right)^{2} + \left( {\frac{{U_{\rho } }}{\rho }} \right)^{2} + \left( {\frac{{2U_{V} }}{V}} \right)^{2} } \right)^{1/2} = 0.42\;\%$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadiun, H., Mohammadiun, M., Hazbehian, M. et al. Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes. Heat Mass Transfer 52, 141–151 (2016). https://doi.org/10.1007/s00231-015-1550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1550-2

Keywords

Navigation