Skip to main content
Log in

An experimental study of heat transfer enhancement in an air channel with broken multi type V-baffles

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This work aims at studying the effect of broken multi type V-baffles on heat transfer, pressure drop, and thermal hydraulic performance characteristics in an air channel is experimentally investigated. The air channel had aspect ratio of 10.0 and the Reynolds number (Re) based upon the mass flow rate of air (m a ) at entrance of the channel varied from 3000 to 8000. The discrete baffle distance (D d /L v ) varied from 0.27 to 0.77, relative baffle gap width (G w /H B ) varied from 0.50 to 1.5, relative baffle height (H B /H D ) varied from 0.25 to 1.0, relative baffle pitch (P B /H B ) varied from 8.0 to 12, relative baffle width (W D /H D ) varied from 1.0 to 6.0, and flow attack angle (α a )varied from 30° to 70°. It has been found that performance of broken multi type V-baffles air channel is better than the performance of smooth surface air channel for the range of geometrical parameters investigated. Experimental results observed that maximum enhancement in overall thermal performance have been found at Dd/Lv value of 0.67, Gw/HB value of 1.0, HB/HD value of 0.50, P B /H B value of 10, and αavalue of 60°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A p :

Surface area of heated plate, m 2

A o :

Area of orifice, m 2

C do :

Coefficient of discharge

C p :

Specific heat of air, J/kgK

D d :

Gap or discrete distance [m]

G w :

Gap or discrete width [m]

G w /H B :

Relative gap width

h t :

Convective heat transfer coefficient [W . m −2 K −1]

D hd :

Hydraulic diameter of channel, m

f :

Friction factor

f rs :

Friction factor of roughened baffle

f ss :

Friction factor smooth baffle

h t :

Convective heat transfer coefficient, W/m 2 K

H D :

Height of channel,m

H B :

Height of baffle, m

H B /H D :

Relative baffle height

K a :

Thermal Conchannelivity of air, W/mK

L t :

Length of test section, m

L v :

Length of V-pattern baffle, m

D d /L v :

Relative discrete distance

m a :

Mass flow rate of air, kg/s

Nu :

Nusselt number

Nu rs :

Nusselt number of rough surface

Nu ss :

Nusselt number of smooth surface

P B :

Pitch of baffle channel, m

P B /H B :

Relative pitch ratio

(∆ p ) d :

Pressure drop across test section, Pa

(∆ p ) o :

Pressure drop across orifice plate, Pa

Q u :

Useful heat gain, W

Re:

Reynolds number of fluid

T f :

Average temperature of air, K

T i , T A1 :

Inlet temperature of air, K

T o :

Outlet temperature of air, K

T p :

Plate temperature of air, K

U :

Mean air velocity, m/s

V :

Velocity of air, m/s

W D /H D :

Channel aspect ratio

W D :

Width of channel, m

W B :

Width of a single V-broken baffle, m

W D /W B :

Relative baffle width

SAH :

Solar air heater

SAC:

Solar air channel

α a :

Angle of attack,°

β R :

Ratio of orifice meter to pipe diameter, dimensionless

ρ a :

Density of air, kg/m 3

ν a :

Kinematic viscosity of air, m 2/s

η p :

Thermo-hydraulic performance

References

  1. Khanoknaiyakarn C, Kwankaomeng S, Promvonge P (2011) Thermal performance enhancement in solar air heater channel with periodically v-shaped baffles. In: IEEE explore, International conference on utility exhibition on power and energy systems issues & prospectus for Asia, Sep

  2. Ming L, Tariq SK, Ebrahim AH, Zahid AH (2016) Single phase heat transfer and pressure drop analysis of a dimpled enahnced tube. Appl Therm Eng 101:38–46

    Article  Google Scholar 

  3. Sompol S, Pongjet P, Chinaruk T, Monsak P (2016) Thermal performance in solar air heater channel with combined wavy-groove and perforated delta wing vortex generator. Appl Therm Eng 100:611–620

    Article  Google Scholar 

  4. Saini RP, Verma J (2008) Heat transfer and friction factor correlations for a duct having dimple shape artificial roughness for solar air heaters. Energy 33:1277–1287

    Article  Google Scholar 

  5. Bekele A, Mishra M, Dutta S (2011) Effects of delta-shaped obstacles on the thermal performance of solar air heater. Advanced Mechanical Engineering 103:502

    Google Scholar 

  6. Chompookham T, Thianpong C, Kwankaomeng S, Promvonge P (2010) Heat transfer augmentation in a wedge ribbed duct using winglet vortex generators. Int Commun Heat Mass Transfer 37:163–169

    Article  Google Scholar 

  7. Sahel D, Ameur H, Redouane B, Kamla Y (2016) Enhancement of heat transfer in a rectangular channel with perforated baffles. Appl Therm Eng 101:156–164

    Article  Google Scholar 

  8. Promovong P (2010) Heat transfer and pressure drop in a duct with multiple 60° V baffle. Int Commun Heat Mass Transfer 37:835–840

    Article  Google Scholar 

  9. Tang LH, Chu WX, Ahmed N, Zeng MA (2016) New configuration of winglet longitudinal vortex generator to enhance heat transfer in a Rectangular Channel. Appl Therm Eng 104:74–84

    Article  Google Scholar 

  10. Promvong P, Sripattanapipat S, Tamna S, Kwankaomeng S, Thian C (2010) Numerically investigation of laminar heat transfer in a square duct with 45° inclined baffle. Int Commun Heat Mass Transfer 37:170–171

    Article  Google Scholar 

  11. Sripattanapipat S, Promvonge P (2009) Numerical analysis of laminar heat transfer in a channel with diamond shaped baffles. Int Commun Heat Mass Transfer 36:32–38

    Article  Google Scholar 

  12. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C (2010) Heat transfer enhancement in a tube using delta-winglet twisted tape insets. Appl Therm Eng 30:310–318

    Article  Google Scholar 

  13. Nuntadusit C, Piya I, Wae-hayee M, Eiamsa-ard S (2015) Heat transfer characteristics in a channel fitted with zigzag-cut baffles. J Mech Sci Technol 29:2547–2554

    Article  Google Scholar 

  14. Sriromreun P, Thianpong C, Promvonge P (2012) Experimental and numerical study on heat transfer enhancement in a duct with Z-shaped baffles. Int Commun Heat Mass Transfer 39:945–952

    Article  Google Scholar 

  15. Nie JH, Chen YT, Hsieh HT (2009) Effect of a baffle on separated convection flow adjacent to backward-facing step. Int J Therm Sci 48:618–625

    Article  Google Scholar 

  16. Karwa R, Maheshwari BK (2009) Heat transfer and friction in an asymmetrically heated rectangular duct with half and fully perforated baffles at different pitches. Int Commun Heat Mass Transfer 36:264–268

    Article  Google Scholar 

  17. Shin S, Kawak JS (2008) Effect of hole shape on the heat transfer in a rectangular duct with perforated blockage walls. J Mech Sci Technol 22:1945–1951

    Article  Google Scholar 

  18. Bopche SB, Tandale MS (2009) Experimental investigation on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int J Heat Mass Transf 52:2834–2848

    Article  Google Scholar 

  19. Romdhane BS (2007) The air solar collectors: comparative study, introduction of baffles to favor the heat transfer. Sol Energy 81:39–149

    Article  Google Scholar 

  20. Lin CW (2006) Experimental study of thermal behaviour in a rectangular duct with baffles of pores. Int Commun Heat Mass Transfer 33:985–992

    Article  Google Scholar 

  21. Skullong S, Thianpong C, Promvonge P (2016) Effects of rib size and arrangement on forced convective heat transfer in a solar air heater channel. Heat Mass Transf. doi:10.1007/s00231-015-1515-5

  22. Karwa R, Maheshwari BK, Karwa N (2005) Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles. Int Commun Heat Mass Transfer 32:275–284

    Article  Google Scholar 

  23. Ary BKP, Lee MS, Ahn SW, Lee DH (2012) The effect of the inclined perforated baffle on heat transfer and flow patterns in the channel. Int Commun Heat Mass Transfer 39:1578–1583

    Article  Google Scholar 

  24. Dutta P, Hossain A (2005) Internal cooling augmentation in rectangular duct using two inclined baffles. Int J Heat Fluid Flow 26:223–232

    Article  Google Scholar 

  25. Chamoli S, Thakur NS (2013) Correlations for solar air heater duct with V-shaped perforated baffles as roughness elements on absorber plate. Int J Sustainable Energy 857318

  26. Tamna S, Skullong S, Thianpong C, Promvonge P (2014) Heat transfer behaviour in solar air heater duct with multiple V baffle vortex generators. Sol Energy 110:720–735

    Article  Google Scholar 

  27. Khanjian A, Habchi C, Russeil S, Bougeard D, Lemenand (2017) Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow. Int J Therm Sci 114:1–14

    Article  Google Scholar 

  28. Zhou G, Ye Q (2012) Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl Therm Eng 37:241–248

    Article  Google Scholar 

  29. ASHRAE Standard 93 (2003) Method of testing to determine the thermal performance of solar collectors. American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta

    Google Scholar 

  30. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  31. Petukhov B (1970) Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv Heat Tran 6:1565

    Google Scholar 

  32. Webb RL, Eckert ERG (1972) Application of rough surface to heat exchanger design. Int J Heat Mass Transf 15:1647–1658

    Article  Google Scholar 

Download references

Acknowledgements

We really thank the reviewers for constructive criticisms and valuable comments, which were of great help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Appendix: uncertainty analysis calculation

Appendix: uncertainty analysis calculation

Uncertainty is the possible numerical value of the error encountered during experimentation. The experimental value may differ from its true value due to presence of lot of factors which come into play during investigation. This deviation in the data of measured parameters from actual data is the uncertainty in measurement. The important parameters considered for the calculation of uncertainty are: mass flow rate, heat transfer coefficient, Nusselt number and friction factor etc. Uncertainty associated with instruments used in various measurements of parameters in the experiment is given in Table 6.

Table 6 Uncertainty intervals of various measurements
  1. 1.

    Mass flow rate

    $$ \dot{m}={C}_d\times {A}_o\times {\left[\frac{2.\rho .{\left(\Delta P\right)}_o}{1-{\psi}^4}\right]}^{0.5} $$
    $$ \dot{m}={C}_d\times {A}_o\times {\rho}^{0.5}\times {\left(\Delta P\right)}_o^{0.5}\times {\left[\frac{2}{1-{\psi}^4}\right]}^{0.5} $$
    $$ {\left[\frac{2}{1-{\beta}^4}\right]}^{0.5}= X= Cons \tan t $$
    $$ Then,\kern0.6em \dot{m}={XC}_d\;{A}_o{\rho}^{0.5}{\left(\Delta P\right)}_0^{0.5} $$
    $$ \frac{\delta\;\dot{m}}{\delta\;{C}_d}={XA}_o{\rho}^{0.5}{\left(\Delta P\right)}_o^{0.5} $$
    $$ \frac{\delta \dot{m}}{\delta {A}_o}={XC}_d{\rho}^{0.5}{\left(\Delta P\right)}_o^{0.5} $$
    $$ \frac{\delta \dot{m}}{{\delta \rho}_o}={XA}_o{C}_d0.5{\rho}^{-0.5}{\left(\Delta P\right)}_o^{0.5} $$
    $$ \frac{\delta \dot{m}}{\delta \left({\left(\Delta P\right)}_o\right)}={XA}_o{C}_d\rho 0.5{\left(\Delta P\right)}_o^{-0.5} $$
    $$ \delta \dot{m}={\left[{\left(\frac{\delta \dot{m}}{\delta {C}_d}\times \delta {C}_d\right)}^2+{\left(\frac{\delta \dot{m}}{\delta {A}_o}\times \delta {A}_o\right)}^2+{\left(\frac{\delta \dot{m}}{\delta \rho}\times \delta \rho \right)}^2+{\left(\frac{\delta \dot{m}}{\delta {\left(\Delta P\right)}_o}\times \delta {\left(\Delta P\right)}_o\right)}^2\right]}^{0.5} $$
    $$ \frac{\delta \dot{m}}{\dot{m}}={\left[{\left(\frac{\delta {C}_d}{C_d}\right)}^2+{\left(\frac{\delta {A}_o}{A_o}\right)}^2+{\left(\frac{\delta \rho}{\rho}\right)}^2+{\left(\frac{\delta {\left(\Delta P\right)}_o}{{\left(\Delta P\right)}_o}\right)}^2\right]}^{0.5} $$

    From calibration chart of orifice meter, the value of \( \frac{\delta {C}_d}{C_d} \)= 1.5%, the uncertainty in (ΔP)o, for U-tube manometer is 1 mm ΔP o  = Δh o  sin 90 = 100 × sin 90 = 100mm

    $$ \frac{\delta\;\dot{m}}{\dot{m}}=1.73\% $$
  2. 2.

    Heat transfer coefficient

    $$ h=\frac{Q_u}{A_P.\left({T}_P-{T}_f\right)}\kern0.24em or\kern0.24em h=\frac{Q_u}{A_p.\Delta {T}_f} $$
    $$ \frac{\delta\;h}{h}={\left[{\left(\frac{\delta\;{Q}_u}{Q}\right)}^2+{\left(\frac{\delta {A}_p}{A_P}\right)}^2+{\left(\frac{\delta \left(\Delta {T}_f\right)}{\Delta {T}_f}\right)}^2\right]}^{0.5} $$
    $$ \frac{\delta\;h}{h}=3.014\% $$
  3. 3.

    Nusselt number

    $$ Nu=\frac{hD}{K} $$
    $$ \frac{\delta Nu}{Nu}={\left[{\left(\frac{\delta h}{h}\right)}^2+{\left(\frac{\delta D}{D}\right)}^2+{\left(\frac{\delta K}{K}\right)}^2\right]}^{0.5} $$
    $$ \frac{\delta Nu}{Nu}=3.2\% $$
  4. 4.

    Friction factor

    $$ {f}_r=\frac{2.{\left(\Delta P\right)}_d. D}{4.\rho . L.{V}^2} $$
    $$ \frac{\delta\;{f}_r}{f_r}={\left[{\left(\frac{\delta V}{V}\right)}^2+{\left(\frac{\delta \rho}{\rho}\right)}^2+{\left(\frac{\delta D}{D}\right)}^2+{\left(\frac{\delta L}{L}\right)}^2+{\left(\frac{\delta {\left(\Delta P\right)}_d}{{\left(\Delta P\right)}_d}\right)}^2\right]}^{0.5} $$
    $$ \frac{\delta\;{f}_r}{f_r}=3.45\% $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, R., Maithani, R. et al. An experimental study of heat transfer enhancement in an air channel with broken multi type V-baffles. Heat Mass Transfer 53, 3593–3612 (2017). https://doi.org/10.1007/s00231-017-2089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2089-1

Navigation