Skip to main content
Log in

Numerical investigation for finding the appropriate design parameters of a fin-and-tube heat exchanger with delta-winglet vortex generators

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A numerical simulation is performed to investigate the heat transfer and pressure drop characteristics of three-row inline tube bundles as a part of a heat exchanger (Re = 1000, Pr = 4.29). To enhance heat transfer, two pairs of delta winglet-type vortex generators (VGs) installed beside the first row and between the first and second rows of the tube bundles. The diameter of the second row of the tubes is chosen smaller than those of the first and third. A comprehensive study on the effects of various geometrical parameters such as transverse and longitudinal positions of VGs, length and height of VGs and angle of attack of the delta winglets is performed to augment heat transfer. Based on this study the best values of these design parameters are determined. The results showed that the best model increases the convective heat transfer ratio and thermal performance factor about 59 and 43 %, respectively, in compare with the geometry without VG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A:

Heat transfer area (m2)

Cp :

Specific heat (J/kg K)

d:

Tube diameter of the second row (m)

D:

Tube diameter of the first and third row (m)

Dh :

Hydraulic diameter, Dh = 2H (m)

E:

Thermal performance factor

f:

Fanning friction factor

h:

Heat transfer coefficient (W/m2 K)

h* :

Height of delta winglet (m)

H:

Channel height (fin pitch) (m)

j:

Colburn factor

l:

Length of delta winglet (m)

L:

Length of main domain (m)

p:

Pressure (Pa)

Pl :

Longitudinal tube pitch (m)

Pr:

Prandtl number

Pt :

Transverse tube pitch (m)

Δp:

Pressure drop (Pa)

Q:

Heat transfer (W)

Re:

Reynolds number

S:

Channel width (m)

t:

Thickness of delta winglet (m)

T:

Temperature (K)

ΔT:

Temperature difference (K)

u, v, w:

Velocity components in x, y and z directions (m/s)

Uin :

Inlet velocity (m/s)

x, y, z:

Cartesian coordinates (m)

X:

Longitudinal position of delta winglet (m)

Y:

Transverse position of delta winglet (m)

α:

Attack angle of the first delta winglet (°)

β:

Attack angle of the second delta winglet (°)

Γ:

Total vorticity flux (1/s)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg/m3)

\(\overline{\omega }\) :

Magnitude of the vorticity vector (1/s)

i, k:

Index

in:

Inlet parameter

LMTD:

Logarithmic mean temperature difference

o:

Heat exchanger without delta winglet

out:

Outlet parameter

w:

Wall

1:

Related to first delta winglet

2:

Related to second delta winglet

References

  1. Jacobi AM, Shah RK (1995) Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp Thermal Fluid Sci 11:295–309

    Article  Google Scholar 

  2. Fiebig M, Valencia A, Mitra N (1993) Wing-type vortex generators for fin and tube heat exchangers. Exp Thermal Fluid Sci 7:287–295

    Article  Google Scholar 

  3. Chen Y, Fiebig M, Mitra NK (1998) Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet—parametric investigations of the winglet. Int J Heat Mass Transf 41:3961–3978

    Article  MATH  Google Scholar 

  4. Chen Y, Fiebig M, Mitra NK (1998) Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line. Int J Heat Mass Transf 41:4151–4166

    Article  MATH  Google Scholar 

  5. Chen Y, Fiebig M, Mitra NK (2000) Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators. Int J Heat Mass Transf 43:417–435

    Article  MATH  Google Scholar 

  6. Torii K, Kwak K, Nishino K (2002) Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. Int J Heat Mass Transf 45:3795–3801

    Article  Google Scholar 

  7. Sohankar A, Davidson L (2001) Effect of inclined vortex generators on heat transfer enhancement in a three-dimensional channel. Numer Heat Transf A-39:443–448

    Google Scholar 

  8. Sohankar A (2004) The LES and DNS simulations of heat transfer and fluid flow in a plate-fin heat exchanger with vortex generators. Iran J Sci Technol 28:443–452

    MATH  Google Scholar 

  9. Sohankar A (2007) Heat transfer augmentation in a rectangular channel with a vee-shaped vortex generator. Int J Heat Fluid Flow 28:306–317

    Article  Google Scholar 

  10. Kwak KM, Torii K, Nishino K (2003) Heat transfer and pressure loss penalty for the number of tube rows of staggered finned—tube bundles with a single transverse row of winglets. Int J Heat Mass Transf 46:175–180

    Article  Google Scholar 

  11. Kwak KM, Torii K, Nishino K (2005) Simultaneous heat transfer enhancement and pressure loss reduction for finned-tube bundles with the first or two transverse rows of built-in winglets. Exp Thermal Fluid Sci 29:625–632

    Article  Google Scholar 

  12. Joardar A, Jacobi AM (2008) Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int J Refrig 31:87–97

    Article  Google Scholar 

  13. Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part (A): verification of field synergy principle. Int J Heat Mass Transf 51:1179–1191

    Article  MATH  Google Scholar 

  14. Chu P, He YL, Tao WQ (2009) Three-Dimensional Numerical study of flow and heat transfer enhancement using vortex generators in fin-and-tube heat exchangers. Journal of Heat Transfer ASME 131:091903.1–091903.9

    Article  Google Scholar 

  15. Tian TL, Ling HY, Gang LY, Quan TW (2009) Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transf 36:111–120

    Article  Google Scholar 

  16. Lei YG, He YL, Tian LT, Chu P, Tao WQ (2010) Hydrodynamics and hea ttransfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chem Eng Sci 6:1551–1562

    Article  Google Scholar 

  17. Wu JM, Tao WQ (2011) Impact of delta winglet vortex generators on the performance of a novel fin-tube surfaces with two rows of tubes in different diameters. Energy Convers Manag 52:2895–2901

    Article  Google Scholar 

  18. Wu JM, Zhang H, Yan CH, Wang Y (2012) Experimental study on the performance of a novel fin-tube air heat exchanger with punched longitudinal vortex generator. Energy Convers Manag 57:42–48

    Article  Google Scholar 

  19. Min C, Qi C, Wang E, Tian L, Qin Y (2012) Numerical investigation of turbulent flow and heat transfer in a channel with novel longitudinal vortex generators. Int J Heat Mass Transf 55:7268–7277

    Article  Google Scholar 

  20. He YL, Han H, Tao WQ, Zhang YW (2012) Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. Int J Heat Mass Transf 55:5449–5458

    Article  Google Scholar 

  21. Mirzaei M, Sohankar A (2013) Heat transfer augmentation in plate finned tube heat exchangers with vortex generators: a comparison of round and flat tubes. IJST Trans Mech Eng 37:39–51

    Google Scholar 

  22. Jang JY, Hsu LF, Leu JS (2013) Optimization of the span angle and location of vortex generators in a plate-fin and tube heat exchanger. Int J Heat Mass Transf 67:432–444

    Article  Google Scholar 

  23. Delac B, Trp A, Lenic K (2014) Numerical investigation of heat transfer enhancement in a fin and tube heat exchanger using vortex generators. Int J Heat Mass Transf 78:662–669

    Article  Google Scholar 

  24. Gong B, Wang LB, Lin ZM (2014) Heat transfer characteristics of a circular tube bank fin heat exchanger with fins punched curve rectangular vortex generators in the wake regions of the tubes. Appl Thermal Eng 75:1–15

    Google Scholar 

  25. Gholami AA, Wahid MA, Mohammed HA (2014) Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int Commun Heat Mass Transf 54:132–140

    Article  Google Scholar 

  26. Hu WL, Song KW, Guan Y, Chang LM, Liu S, Wang LB (2013) Secondary flow intensity determines Nusselt number on the fin surfaces of circle tube bank fin heat exchanger. Int J Heat Mass Transf 62:620–631

    Article  Google Scholar 

  27. Hu WL, Su M, Wang LC, Zhang Q, Chang LM, Liu S, Wang LB (2013) The optimum fin spacing of circular tube bank fin heat exchanger with vortex generators. Heat Mass Transf 49:1271–1285

    Article  Google Scholar 

  28. Mirzaei M, Sohankar A, Davidson L, Innings F (2014) Large Eddy simulation of the flow and heat transfer in a half-corrugated channel with various wave amplitudes. Int J Heat and Mass Transf 76:432–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sohankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behfard, M., Sohankar, A. Numerical investigation for finding the appropriate design parameters of a fin-and-tube heat exchanger with delta-winglet vortex generators. Heat Mass Transfer 52, 21–37 (2016). https://doi.org/10.1007/s00231-015-1705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1705-1

Keywords

Navigation