Skip to main content
Log in

Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study has focused on the systematical investigation of effect of mass fraction and size of multi-walled carbon nanotubes (MWCNTs) doped in phase change material (PCM) on thermal properties such as thermal conductivity, melting/solidification temperatures and latent heats. Thermal conductivity, melting/solidification temperatures and latent heats of MWCNTs/PCM composites with three different diameters and two different lengths, obtained by doping MWCNTs into PCM at the mass fraction of 1–5%, were evaluated according to the criteria such as particle size and mass fraction. The results demonstrated that not only mass fractions but also size of MWCNTs are effective on the thermal properties of the composites. It was concluded that increase in diameter and length of MWCNTs positively affects enhancement of thermal conductivity; on the other hand, it does not cause a significant change at melting/solidification temperatures. In addition to these, a decline was observed at melting/solidification latent heats of MWCNTs/PCM composites, depending on doped mass fractions of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.

    Article  CAS  Google Scholar 

  2. Fan LW, Khodadadi JM. Thermal conductivity enhancement of phase change phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2011;15:24–6.

    Article  CAS  Google Scholar 

  3. Oró E, de Garcia A, Castel A, Farid MM, Cabeza LF. Review on phase change materials (PCMs) for cold thermal storage applications. Appl Energy. 2012;99:513–33.

    Article  Google Scholar 

  4. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change material (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  5. Sahoo SK, Das MK, Rath P. Applications of TEC-PCM based heat sinks for cooling of electronic components: a review. Renew Sustain Energy Rev. 2016;59:550–82.

    Article  CAS  Google Scholar 

  6. Li WQ, Qu ZQ, He YL, Tao YB. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J Power Sour. 2014;255:9–15.

    Article  CAS  Google Scholar 

  7. Weng YC, Cho HP, Chang CC, Chen SL. Heat pipe with PCM for electronic cooling. Appl Energy. 2011;88:1825–33.

    Article  CAS  Google Scholar 

  8. Zhou G, He S. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl Energy. 2015;138:648–60.

    Article  CAS  Google Scholar 

  9. Barzin R, Chen JJ, Young BR, Farid MM. Application of PCM energy storage in combination with ventilation for space cooling. Appl Energy. 2015;158:412–21.

    Article  Google Scholar 

  10. Jin X, Shi D, Midina MA, Shi X, Zhou X, Zhang X. Optimal location of PCM layer in building walls under Nanjing (China) weather conditions. J Therm Anal Calorim. 2017;129:1767–78.

    Article  CAS  Google Scholar 

  11. Ye WB. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128:533–40.

    Article  CAS  Google Scholar 

  12. Hadiya JP, Kumar A, Shukla N. Experimental thermal behaviour response of paraffin wax as storage unit. J Therm Anal Calorim. 2016;124:1511–8.

    Article  CAS  Google Scholar 

  13. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  14. Yuan Y, Li T, Zhang N, Cao X, Yang X. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124:881–8.

    Article  CAS  Google Scholar 

  15. Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. 2004;47:2841–7.

    Article  CAS  Google Scholar 

  16. Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009;83:1509–20.

    Article  CAS  Google Scholar 

  17. Zhang P, Mang Z, Zhu H, Yanling W, Peng S. Experimental and numerical study of heat transfer characteristics of a Paraffin/metal foam composite PCM. Energy Proc. 2015;75:3091–7.

    Article  CAS  Google Scholar 

  18. Xiao M, Feng B, Gong KC. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag. 2002;43:103–8.

    Article  CAS  Google Scholar 

  19. Yang J, Yang L, Xu C, Du X. Experimental study on enhancement of thermal energy storage with phase change material. Appl Energy. 2016;169:164–76.

    Article  CAS  Google Scholar 

  20. Wang J, Xie H, Xin Z, Li Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84:339–44.

    Article  CAS  Google Scholar 

  21. Kumerasan V, Velraj R, Das SK. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf. 2012;48:1345–55.

    Article  Google Scholar 

  22. Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWCNTs on the pani/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.

    Article  CAS  Google Scholar 

  23. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L. Effects of MWCNTs on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

    Article  CAS  Google Scholar 

  24. Wu SY, Tang X, Nie CD, Peng DQ, Gong SG, Wang ZQ. The effects of various carbon nanofillers on the thermal properties of paraffin for energy storage applications. J Therm Anal Calorim. 2016;124:181–8.

    Article  CAS  Google Scholar 

  25. Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy. 2013;110:163–72.

    Article  CAS  Google Scholar 

  26. Yu ZT, Fang X, Fan LW, Wang X, Xiao YQ, Zeng Y, Xu X, Hu YC, Cen KF. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon. 2013;53:277–85.

    Article  CAS  Google Scholar 

  27. Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488:39–42.

    Article  CAS  Google Scholar 

  28. Wang J, Xie H, Xin Z, Li Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon. 2010;48:3979–86.

    Article  CAS  Google Scholar 

  29. Teng TP, Yu CC. The effect on heating rate for phase change materials containing MWCNTs. Int J Chem Eng Appl. 2012;3:340–2.

    CAS  Google Scholar 

  30. Shaikh S, Lafdi K, Hallinan K. Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys. 2008;103:094302.

    Article  Google Scholar 

  31. Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanoube additives on thermal behaviour of phase change materials. Sol Energy Mater Sol Cells. 2011;95:1208–12.

    Article  CAS  Google Scholar 

  32. Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, Usrey MS, Siddons G, Shim M, Kebliski P. Interfacial heat flow in carbon nanotube suspension. Nat Mater. 2003;2:731–4.

    Article  CAS  Google Scholar 

  33. Chen YJ, Nguyen DD, Shen MY, Yip MC, Tai NH. Thermal characterization of the graphite nanosheets reinforced paraffin phase change composites. Compos A. 2013;44:40–6.

    Article  CAS  Google Scholar 

  34. Sharma RK, Ganesan P, Tyagi VV. Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim. 2016;124:1357–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by ASELSAN INC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerim Yapici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, U.N., Kurtulus, S., Parlak, M. et al. Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials. J Therm Anal Calorim 132, 631–641 (2018). https://doi.org/10.1007/s10973-018-6966-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6966-8

Keywords

Navigation