Skip to main content
Log in

Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A:

Pre-exponential factor (kmol/kg h)

A i :

Inner heat transfer area per unit length (m2)

A m :

Arithmetic mean value of heat transfer area (m2)

A o :

Outer heat transfer area per unit length (m2)

B:

Wall thickness (m)

C2 :

Inertial resistance (m−1)

C j,r :

Molar concentration of species j in the reaction r (kmol/m3)

c p :

Heat capacity at constant pressure (J/kg K)

dp :

Catalyst particle diameter (m)

D i,m :

Total diffusion coefficient for species i in gas mixture (m2/s)

d:

Tube inner diameter (m)

D:

Tube outer diameter (m)

E :

Activation energy (J/kmol)

E g :

Total energy (kg m2/s2)

g:

Gravitational acceleration (m/s2)

G :

Entropy (J/kmol K)

h i :

Species enthalpy of formation (J/kmol)

h v :

Heat transfer coefficient between gas and solid phases (W/m3 K)

H :

Enthalpy (J/kmol)

H(T′):

Enthalpy at temperature T′ (the increased temperature due to releasing heat of reaction) (J/kmol)

H(T):

Enthalpy at temperature T (the desired temperature for reaction) (J/kmol)

\(\overline{\overline{I}}\) :

Identity matrix

\(\overrightarrow {J}\) :

Diffusion flux

M m :

Molecular weight of gas mixture (kg/kmol)

M ω,i :

Molecular weight of species i (kg/kmol)

N r :

Number of chemical species in the system

Nu v :

Nusselt number

p:

Pressure (Pa)

ΔP:

Pressure drop of shell-side (Pa)

Pr:

Prandtl number

q:

Heat flux (W/m2)

R:

Universal gas constant (kJ/kmol K)

Ri :

Reaction rate (kg/m3 s)

Re :

Reynolds number

Re D :

Reynolds number outside the tube

S :

Momentum source term

Sc t :

Schmidt number

S h f :

Fluid enthalpy source term

T:

Temperature (K)

ΔT:

Temperature difference between shell-side inlet and outlet (K)

v:

Physical velocity vector (m/s)

vT :

Transpose of velocity vector (m/s)

Y:

Mass fraction

α c :

Molten salt side heat transfer at walls (W/m2 K)

α g :

Fluid side heat transfer at walls (W/m2 K)

ɛ :

Turbulent kinetic energy dissipation (m2/s3)

\(\eta_{j,r}^{'}\) :

Rate exponent for reactant species j in the reaction r

\(\eta_{j,r}^{{\prime \prime }}\) :

Rate exponent for product species j in the reaction r

\(\overline{\overline{\tau }}\) :

Shear stress of gas phase (Pa)

κ :

Thermal conductivity (W/m K)

κ eff :

Effective thermal conductivity of the medium

κ f,r :

Forward rate constant for reaction r, units vary

κ g,c :

Total heat transfer coefficient (W/m2 K)

λ :

Thermal conductivity of steel (W/m K)

μ :

Viscosity (Pa s)

μ t :

Turbulent viscosity (Pa s)

\(\tilde{v}\) :

Turbulent kinematic viscosity (m2/s)

\(v_{i,r}^{{\prime }}\) :

Stoichiometric coefficient for reactant i in the reaction r

\(v_{i,r}^{{\prime \prime }}\) :

Stoichiometric coefficient for product i in the reaction r

ρ :

Density (kg/m3)

ρ b :

Bulk density of bed (kg/m3)

φ :

Medium porosity

ϕ :

Dissipation function

ω :

Permeability (m2)

c:

Molten salt

g:

Gas mixture

i :

Species number

j :

Second species number

m:

Gas mixture

ref :

Reference

s :

Solid phase

References

  1. Lin MM (2001) Selective oxidation of propane to acrylic acid with molecular oxygen. Appl Catal A 207:1–16

    Article  Google Scholar 

  2. Landi G, Lisi L, Russo G (2005) Oxidation of propane and propylene to acrylic acid over vanadyl pyrophosphate. J Mol Catal A: Chem 239:172–179. doi:10.1016/j.molcata.2005.06.018

    Article  Google Scholar 

  3. Gabelnick AM, Capitano AT, Kane KM, Gland JL, Fischer DA (2000) Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface. J Am Chem Soc 122:143–149

    Article  Google Scholar 

  4. Reitz JB, Solomon EI (1998) Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc 120:11467–11478

    Article  Google Scholar 

  5. Udalova OA, Romanov An, Rufov YN, Shashkin DP, Kuli-zade AM (2002) The role of active oxygen transfer through the gas phase in propylene oxidation over a bismuth-molybdenum catalyst. Kinet Catal 43:81–85

    Article  Google Scholar 

  6. Xie J (2000) An IGC study of Pd/SDB catalysts for partial oxidation of propylene to acrylic acid. J Catal 191:86–92. doi:10.1006/jcat.1999.2796

    Article  Google Scholar 

  7. Xie JH, Zhang QL, Chuang KT (2001) Role of steam in partial oxidation of propylene over a Pd/SDB catalyst. Appl Catal A 220:215–221

    Article  Google Scholar 

  8. Irani M, Alizadehdakhel A, Pour AN, Proulx P, Tavassoli A (2011) An investigation on the performance of a FTS fixed-bed reactor using CFD methods. Int Commun Heat Mass Transf 38:1119–1124. doi:10.1016/j.icheatmasstransfer.2011.05.005

    Article  Google Scholar 

  9. Wang BW, Ma XB, Mao LF, Xu GH (2000) Simulation of the process of diethyl oxalate prepared by CO coupling-regeneration reaction. J Nat Gas Chem 9:187–196

    Google Scholar 

  10. Valipour MS, Saboohi Y (2007) Modeling of multiple noncatalytic gas–solid reactions in a moving bed of porous pellets based on finite volume method. Heat Mass Transf 43:881–894. doi:10.1007/s00231-006-0154-2

    Article  Google Scholar 

  11. Mears DE (1971) Diagnostic criteria for heat transport limitations in fixed bed reactors. J Catal 20:127–131

    Article  Google Scholar 

  12. Tioni E, Broyer JP, Monteil V, McKenna T (2012) Influence of reaction conditions on catalyst behavior during the early stages of gas phase ethylene homo-and copolymerization. Ind Eng Chem Res 51:14673–14684. doi:10.1021/ie301682u

    Article  Google Scholar 

  13. Hamidreza BD, Farbod D, Fatemeh H, Xuyen KP, Rune M (2012) Analysis of external and internal mass transfer at low Reynolds numbers in a multiple-slit packed bed microstructured reactor for synthesis of methanol from syngas. Ind Eng Chem Res 51:13574–13579. doi:10.1021/ie300039a

    Article  Google Scholar 

  14. López E, Heracleous E, Lemonidou AA, Borio DO (2008) Study of a multitubular fixed-bed reactor for ethylene production via ethane oxidative dehydrogenation. Chem Eng J 145:308–315. doi:10.1016/j.cej.2008.08.029

    Article  Google Scholar 

  15. Arpentinier P, Cavani F, Trifiro F (2001) The technology of catalytic oxidations. France, Paris

    Google Scholar 

  16. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212:17–60

    Article  Google Scholar 

  17. Godefroy A, Patience GS, Tzakova T, Garrait D, Dubois JL (2009) Reactor technologies for propane partial oxidation to acrylic acid. Chem Eng Technol 32:373–379. doi:10.1002/ceat.200800309

    Article  Google Scholar 

  18. Redlingshöfer H, Kröcher O, Böck W, Huthmacher K, Emig G (2002) Catalytic wall reactor as a tool for isothermal investigations in the heterogeneously catalyzed oxidation of propene to acrolein. Ind Eng Chem Res 41:1445–1453

    Article  Google Scholar 

  19. Singh S, Lal S, Kaistha N (2008) Case study on tubular reactor hot-spot temperature control for throughput maximization. Ind Eng Chem Res 47:7257–7263

    Article  Google Scholar 

  20. Vivek VR (2002) Computational flow modeling for chemical reactor engineering. Process systems engineering, vol 5. Academic Press, New York, pp 403–423

    Book  Google Scholar 

  21. Dudukovic MP (2010) Reaction engineering: status and future challenges. Chem Eng Sci 65:3–11. doi:10.1016/j.ces.2009.09.018

    Article  Google Scholar 

  22. Kuchi G, Ponyavin V, Chen Y, Sherman S, Hechanova A (2008) Numerical modeling of high-temperature shell-and-tube heat exchanger and chemical decomposer for hydrogen production. Int J Hydrog Energy 33:5460–5468. doi:10.1016/j.ijhydene.2008.06.072

    Article  Google Scholar 

  23. Strasser W (2010) CFD study of an evaporative trickle bed reactor: Mal-distribution and thermal runaway induced by feed disturbances. Chem Eng J 161:257–268. doi:10.1016/j.cej.2010.04.049

    Article  Google Scholar 

  24. Dixon AG, Nijemeisland M (2001) CFD as a design tool for fixed-bed reactors. Ind Eng Chem Res 40:5246–5254

    Article  Google Scholar 

  25. Kolaczkowski ST, Chao R, Awdry S, Smith A (2007) Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets. Chem Eng Res Des 85:1539–1552. doi:10.1205/cherd06226

    Article  Google Scholar 

  26. Drewsen A, Ljungqvist A, Skoglundh M, Andersson B (2000) Effects of the radial distribution of platinum in spherical alumina catalysts on the oxidation of CO in air. Chem Eng Sci 55:4939–4951

    Article  Google Scholar 

  27. Alizadehdakhel A, Rahimi M, Alsairafi AA (2010) CFD and experimental studies on the effect of valve weight on performance of a valve tray column. Comput Chem Eng 34:1–8. doi:10.1016/j.compchemeng.2009.07.001

    Article  Google Scholar 

  28. Parvareh A, Rahimi M, Alizadehdakhel A, Alsairafi AA (2010) CFD and ERT investigations on two-phase flow regimes in vertical and horizontal tubes. Int Commun Heat Mass Transf 37:304–311. doi:10.1016/j.icheatmasstransfer.2009.11.001

    Article  Google Scholar 

  29. Miroliaei AR, Shahraki F, Atashi H, Karimzadeh R (2012) Comparison of CFD results and experimental data in a fixed bed Fischer–Tropsch synthesis reactor. J Ind Eng Chem 18:1912–1920. doi:10.1016/j.jiec.2012.05.003

    Article  Google Scholar 

  30. Miroliaei AR, Shahraki F, Atashi H (2011) Computational fluid dynamics simulations of pressure drop and heat transfer in fixed bed reactor with spherical particles. Korean J Chem Eng 28:1474–1479. doi:10.1007/s11814-010-0507-x

    Article  Google Scholar 

  31. Nijemeisland M, Dixon AG, Hugh Stitt E (2004) Catalyst design by CFD for heat transfer and reaction in steam reforming. Chem Eng Sci 59:5185–5191. doi:10.1016/j.ces.2004.07.088

    Article  Google Scholar 

  32. Augier F, Idoux F, Delenne JY (2010) Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chem Eng Sci 65:1055–1064. doi:10.1016/j.ces.2009.09.059

    Article  Google Scholar 

  33. Horneber T, Rauh C, Delgado A (2012) Fluid dynamic characterisation of porous solids in catalytic fixed-bed reactors. Microporous Mesoporous Mater 154:170–174. doi:10.1016/j.micromeso.2011.12.047

    Article  Google Scholar 

  34. Jakobsen HA, Lindborg H, Handeland V (2002) A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors. Comput Chem Eng 26:333–357

    Article  Google Scholar 

  35. Dixon AG (2005) CFD study of heat transfer near and at the wall of a fixed bed reactor tube: effect of wall conduction. Ind Eng Chem Res 44:6342–6353

    Article  Google Scholar 

  36. Arzamendi G, Diéguez PM, Montes M, Odriozola JA, Falabella Sousa-Aguiar E, Gandía LM (2010) Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer–Tropsch synthesis. Chem Eng J 160:915–922. doi:10.1016/j.cej.2009.12.028

    Article  Google Scholar 

  37. Vervloet D, Kamali MR, Gillissen JJJ, Nijenhuis J, van den Akker HEA, Kapteijn F, van Ommen JR (2009) Intensification of co-current gas–liquid reactors using structured catalytic packings: a multiscale approach. Catal Today 147:S138–S143. doi:10.1016/j.cattod.2009.07.015

    Article  Google Scholar 

  38. Horneber T, Rauh C, Delgado A (2012) Fluid dynamic characterisation of porous solids in catalytic fixed-bed reactors. Microporous Mesoporous Mater 154:170–174. doi:10.1016/j.micromeso.2011.12.047

    Article  Google Scholar 

  39. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  40. Henneke MR, Ellzey JL (1999) Modeling of filtration combustion in a packed bed. Combust Flame 117:832–840

    Article  Google Scholar 

  41. Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Harwood Academic, New York

  42. Guardo A, Coussirat M, Larrayoz MA, Recasens F, Egusquiza E (2005) Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chem Eng Sci 60:1733–1742. doi:10.1016/j.ces.2004.10.034

    Article  Google Scholar 

  43. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. Technical Report, American Institute of Aeronautics and Astronautics AIAA-92-0439

  44. Choudhury D (1993) Introduction to the renormalization group method and turbulence modeling. Technical Memorandum TM-107

  45. Qian SW (2008) Heat exchanger design handbook (in Chinese ed.). Chemical Industry Press, Beijing

    Google Scholar 

  46. Ma JT, Meng YM (1989) Kinetics of propylene oxidation on a multicomponent molybdenum-containing oxide catalyst (in Chinese ed.). J Lanzhou Univ (Nat Sci) 25(1):90–96

    Google Scholar 

  47. Reid RC, Prausnitz JM, Poiling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill Press Inc, New York, pp 125–137

    Google Scholar 

Download references

Acknowledgments

This research was supported financially by the Program for Chang Jiang Scholars and Innovative Research Terms in Universities (No. IRT0936) and National Basic Research Program of China (Nos. 2009CB219905 and 2009CB219907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Hao, L., Zhang, L. et al. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process. Heat Mass Transfer 51, 67–84 (2015). https://doi.org/10.1007/s00231-014-1384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1384-3

Keywords

Navigation