Skip to main content
Log in

Tubular reactor design for the oxidative dehydrogenation of butene using computational fluid dynamics (CFD) modeling

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Catalytic reactors have been essential for chemical engineering process, and different designs of reactors in multi-scales have been previously studied. Computational fluid dynamics (CFD) utilized in reactor designs have been gaining interest due to its cost-effective advantage in designing the actual reactors before its construction. In this work, butadiene synthesis via oxidative dehydrogenation (ODH) of n-butene using tubular reactor was used as a case study in the CFD model. The effects of coolant and reactor diameter were investigated in assessing the reactor performance. Based on the results of the CFD model, the conversion and selectivity were 86.5% and 59.5% respectively in a fixed bed reactor under adiabatic condition. When coolants were used in a tubular reactor, reactor temperature profiles showed that solar salt had lower temperature gradients inside the reactor than the cooling water. Furthermore, higher conversion (90.9%) and selectivity (90.5%) were observed for solar salt as compared to the cooling water (88.4% for conversion and 86.3% for selectivity). Meanwhile, reducing the reactor diameter resulted in smaller temperature gradients with higher conversion and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-H. Park and C.-H. Shin, J. Ind. Eng. Chem., 21, 683 (2015).

    Article  CAS  Google Scholar 

  2. J.-H. Park, H. Noh, J. W. Park, K. H. Row, K. D. Jung and C.-H. Shin, Res. Chem. Intermed., 37, 1125 (2011).

    Article  CAS  Google Scholar 

  3. J. Rischard, R. Franz, C. Antinori and O. Deutschmann, AIChE J., 63, 43 (2017).

    Article  CAS  Google Scholar 

  4. H. Lee, J. C. Jung, H. Kim, Y.-M. Chung, T. J. Kim, S. J. Lee, S.-H. Oh, Y. S. Kim and I. K. Song, Catal. Commun., 9, 1137 (2008).

    Article  CAS  Google Scholar 

  5. E. Hong, J.-H. Park and C.-H. Shin, Catal. Surv. Asia, 20, 23 (2016).

    Article  CAS  Google Scholar 

  6. K. Huang, L. Wang, S. Lin, Y. Xu and D. Wu, J. Taiwan Inst. Chem. Eng., 63, 61 (2016).

    Article  CAS  Google Scholar 

  7. J.-H. Park and C.-H. Shin, Appl. Catal., A, 495, 1 (2015).

    Article  CAS  Google Scholar 

  8. W. Yan, Q. Y. Kouk, J. Luo, Y. Liu and A. Borgna, Catal. Commun., 46, 208 (2014).

    Article  CAS  Google Scholar 

  9. J. H. Zhang, Z. B. Wang, H. Zhao, Y. Y. Tian, H. H. Shan and C. H. Yang, Appl. Petrochem. Res., 5, 255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Park, Y. Lee, G. Kim and S. Hwang, Korean J. Chem. Eng., 33, 3417 (2016).

    Article  CAS  Google Scholar 

  11. T. Ren, M. K. Patel and K. Blok, Energy, 33, 817 (2008).

    CAS  Google Scholar 

  12. J. S. Sterrett and H. G. McIlvried, Ind. Eng. Chem. Process Des. Dev., 13, 54 (1974).

    Article  CAS  Google Scholar 

  13. E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs and B. F. Sels, Chem. Soc. Rev., 43, 7917 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. W. Xingan and L. Huiqin, Ind. Eng. Chem. Res., 35, 2570 (1996).

    Article  Google Scholar 

  15. F. J. Dumez and G. F. Froment, Ind. Eng. Chem. Process Des. Dev., 15, 291 (1976).

    Article  CAS  Google Scholar 

  16. D. L. Trimm and D. S. Gabbay, Trans. Faraday Soc., 67, 2782 (1971).

    Article  CAS  Google Scholar 

  17. J.-H. Park and C.-H. Shin, Korean J. Chem. Eng., 33, 823 (2016).

    Article  CAS  Google Scholar 

  18. A. Heidari and S. H. Hashemabadi, J. Taiwan Inst. Chem. Eng., 45, 1389 (2014).

    Article  CAS  Google Scholar 

  19. E. J. Hukkanen, M. J. Rangitsch and P. M. Witt, Ind. Eng. Chem. Res., 52, 15437 (2013).

    Article  CAS  Google Scholar 

  20. H. Asadi-Saghandi and J. Karimi-Sabet, Korean J. Chem. Eng., 34, 1905 (2017).

    Article  CAS  Google Scholar 

  21. R. I. Singh, A. Brink and M. Hupa, Appl. Therm. Eng., 52, 585 (2013).

    Article  CAS  Google Scholar 

  22. L. Tian, G. Hu, W. Du and F. Qian, Can. J. Chem. Eng., 94, 2427 (2016).

    Article  CAS  Google Scholar 

  23. K. Huang, S. Lin, J. Wang and Z. Luo, J. Ind. Eng. Chem., 29, 172 (2015).

    Article  CAS  Google Scholar 

  24. J. T. Cornelissen, F. Taghipour, R. Escudié, N. Ellis and J. R. Grace, Chem. Eng. Sci., 62, 6334 (2007).

    Article  CAS  Google Scholar 

  25. X. Liu, S. Hu, Y. Jiang and J. Li, Chem. Eng. J., 278, 492 (2015).

    Article  CAS  Google Scholar 

  26. A. Bakshi, C. Altantzis, L. R. Glicksman and A. F. Ghoniem, Powder Technol., 316, 500 (2017).

    Article  CAS  Google Scholar 

  27. K. M. Wgialla, A. M. Helal and S. S. E. H. Elnashaie, Math. Comput. Model., 15, 17 (1991).

    Article  Google Scholar 

  28. Z. Zhai, X. Wang, R. Licht and A. T. Bell, J. Catal., 325, 87 (2015).

    Article  CAS  Google Scholar 

  29. R. I. Rothenberg and J. M. Smith, AIChE J., 12, 213 (1966).

    Article  CAS  Google Scholar 

  30. R. Serrano-López, J. Fradera and S. Cuesta-López, Chem. Eng. Process., 73, 87 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwon Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, J.A., Hwang, S. Tubular reactor design for the oxidative dehydrogenation of butene using computational fluid dynamics (CFD) modeling. Korean J. Chem. Eng. 35, 2157–2163 (2018). https://doi.org/10.1007/s11814-018-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0143-4

Keywords

Navigation