Skip to main content
Log in

Effect of dispersion behavior on the heat transfer characteristics of alumina nanofluid: an experimental investigation and development of a new correlation function

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Present work aims to study the dispersion characteristics of Al2O3 nano-dispersoid in water following different periods of ultrasonication and its impact on the thermal conductivity and viscosity of the nanofluid. Nanofluids with 0.5–2 vol% of Al2O3 nanoparticles have been prepared by ultrasonication for varying period. Al2O3 nanofluids reported a maximum thermal conductivity enhancement of 16.1% for 2 vol% of nanoparticle concentration, after an optimum ultrasonication of 2 h beyond which the thermal conductivity decreases with further ultrasonication. The optimum ultrasonication time required for uniform dispersion of nanoparticles increases with the increase in the Al2O3 volume fraction. For 1.5 vol% Al2O3 nanoparticle loading, the viscosity of nanofluid decreased by 33% with an increase in the sonication time from 30 to 90 min. Further increase in sonication time by 30 min resulted in 13% increase in the viscosity of Al2O3 nanofluid. This decrease in the thermal conductivity enhancement and increase in the viscosity beyond the optimum ultrasonication period have been attributed to the re-agglomeration of nanoparticles which are confirmed by TEM, and DLS results carried out after different instants of ultrasonication. The occurrence of re-agglomeration is explained in terms of the convective flow associated with the ultrasonication process. Various theoretical models like Maxwell or Hamilton–Crosser models which when used to predict the thermal conductivity of nanofluid, underestimate the thermal conductivity. A new correlation is, therefore, developed on the basis of experimental results. With an R2 value of 0.9924, the correlation showed a good agreement with the present thermal conductivity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity, m2/s

C :

Euler’s constant

c :

Slope of the linear section of the plot ∆T (r, t) vs ln (t)

k :

Thermal conductivity, W/m K

n :

No. of readings

q :

Constant heat produced per unit time and per unit length, J/m s

r :

Diameter of platinum wire, m

s :

Standard deviation

t :

Time, s

u :

Uncertainty

W :

Mass, kg

∆T:

Temperature rise over the platinum wire, K

ρ :

Density, kg/m3

ϕ :

Volume fraction, %

λ :

Wavelength, Å

bf:

Base fluid

nf:

Nanofluid

References

  1. Choi, S.U.S., Eastman, J.: Enhancing thermal conductivity of fluids with nanoparticles. In: International Mechanical Engineering Congress and Exposition, San Francisco, USA. pp. 99–105 (1995)

  2. Li, D., Xie, W., Fang, W.: Preparation and properties of copper-oil-based nanofluids. Nanoscale Res. Lett. 6, 1–7 (2011)

    Google Scholar 

  3. Ghosh, M.M., Ghosh, S., Pabi, S.K.: On synthesis of a highly effective and stable silver nanofluid inspired by its multiscale modeling. Nanosci. Nanotechnol. Lett. 4, 843–848 (2012)

    CAS  Google Scholar 

  4. Moreira, L.M., Carvalho, E.A., Bell, M.J.V., Anjos, V., SantAna, A.C., Alves, A.P.P., Fragneaud, B., Sena, L.A., Archanjo, B.S., Achete, C.A.: Thermo-optical properties of silver and gold nanofluids. J. Therm. Anal. Calorim. 114, 557–564 (2013)

    CAS  Google Scholar 

  5. Aparna, Z., Michael, M.M., Pabi, S.K., Ghosh, S.: Diversity in thermal conductivity of aqueous Al2O3- and Ag-nanofluids measured by transient hot-wire and laser flash methods. Exp. Therm. Fluid Sci. 94, 231–245 (2018)

    CAS  Google Scholar 

  6. Yang, L., Hu, Y.: Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res. Lett. 12, 417 (2017)

    Google Scholar 

  7. Lee, S.W., Park, S.D., Kang, S., Bang, I.C., Kim, J.H.: Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int. J. Heat Mass Transf. 54, 433–438 (2011)

    CAS  Google Scholar 

  8. Zhu, H., Zhang, C., Liu, S., Tang, Y., Yin, Y.: Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl. Phys. Lett. 89, 023123 (2006)

    Google Scholar 

  9. Liu, D., Zhou, Y., Yang, Y., Zhang, L., Jin, F.: Characterization of high performance AIN nanoparticle-based transformer oil nanofluids IEEE Trans. Dielectr. Electr. Insul. 23, 2757–2767 (2016)

    CAS  Google Scholar 

  10. Michael, M., Zagabathuni, A., Ghosh, S., Pabi, S.K.: Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids. J. Therm. Anal. Calorim. 137, 369–380 (2019)

    CAS  Google Scholar 

  11. Soltanimehr, M., Afrand, M.: Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl. Therm. Eng. 105, 716–723 (2016)

    CAS  Google Scholar 

  12. Yang, B., Han, Z.H.: Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl. Phys. Lett. 89, 083111 (2006)

    Google Scholar 

  13. Peng, Z., Joshi, J.B., Moghtaderi, B., Khan, M.S., Evans, G.M., Doroodchi, E.: Segregation and dispersion of binary solids in liquid fluidised beds: a CFD-DEM study. Chem. Eng. Sci. 152, 65–83 (2016)

    CAS  Google Scholar 

  14. Khan, M.S., Mitra, S., Ghatage, S.V., Doroodchi, E., Joshi, J.B., Evans, G.M.: Segregation and dispersion studies in binary solid-liquid fluidised beds: a theoretical and computational study. Powder Technol. 314, 400–411 (2017)

    CAS  Google Scholar 

  15. Arifuzzaman, S.M., Biswas, P., Mehedi, M.F.U., Al-Mamun, A., Ahmmed, S.F., Khan, M.S.: Analysis of unsteady boundary layer viscoelastic nanofluid flow through a vertical porous plate with thermal radiation and periodic magnetic field. J. Nanofluids 7, 1122–1129 (2018)

    Google Scholar 

  16. Arifuzzaman, S.M., Khan, M.S., Mehedi, M.F.U., Rana, B.M.J., Ahmmed, S.F.: Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect. Eng. Sci. Technol. Int. J. 21, 215–228 (2018)

    Google Scholar 

  17. Arifuzzaman, S.M., Uddin Mehedi, M.F., Al-Mamun, A., Biswas, P., Islam, M.R., Khan, M.S.: Magnetohydrodynamic micropolar fluid flow in presence of nanoparticles through porous plate: a numerical study. Int. J. Heat Technol. 36, 936–948 (2018)

    Google Scholar 

  18. Khan, M.S., Evans, G.M., Nguyen, A.V., Mitra, S.: Analysis of particle dispersion coefficient in solid–liquid fluidised beds. Powder Technol. 365, 60–73 (2020)

    CAS  Google Scholar 

  19. Arifuzzaman, S.M., Khan, M.S., Al-Mamun, A., Reza-E-Rabbi, S., Biswas, P., Karim, I.: Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ. Sci. 31, 1388–1398 (2019)

    Google Scholar 

  20. Mahbubul, I.M., Elcioglu, E.B., Amalina, M.A., Saidur, R.: Stability, thermophysical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technol. 345, 668–675 (2019)

    CAS  Google Scholar 

  21. Afzal, A., Khan, S.A., Ahamed Saleel, C.: Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids. Mater. Express 6, 1150d8 (1150d)

    Google Scholar 

  22. Afzal, A., Nawfal, I., Mahbubul, I.M., Kumbar, S.S.: An overview on the effect of ultrasonication duration on different properties of nanofluids. J. Therm. Anal. Calorim. 135, 393–418 (2019)

    CAS  Google Scholar 

  23. Rajendiran, G., Kuppusamy, V.B., Shanmugasundaram, S.: Experimental investigation of the effects of sonication time and volume concentration on the performance of PVT solar collector. IET Renew. Power Gener. 12, 1375–1381 (2018)

    Google Scholar 

  24. Shah, J., Ranjan, M., Gupta, S.K., Sonvane, Y.: Ultrasonication effect on thermophysical properties of Al2O3 nanofluids. AIP Conf. Proc. 1951, 1–4 (2018)

    Google Scholar 

  25. Mahbubul, I.M., Elcioglu, E.B., Saidur, R., Amalina, M.A.: Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason. Sonochem. 37, 360–367 (2017)

    CAS  Google Scholar 

  26. Su, Y., Gong, L., Chen, D.: Dispersion stability and thermophysical properties of environmentally friendly graphite oil-based nanofluids used in machining Introduction. Res. Artic. Adv. Mech. Eng. 8, 1–11 (2016)

    CAS  Google Scholar 

  27. Garg, P., Alvarado, J.L., Marsh, C., Carlson, T.A., Kessler, D.A., Annamalai, K.: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transf. 52, 5090–5101 (2009)

    CAS  Google Scholar 

  28. Nguyen, V.S., Rouxel, D., Hadji, R., Vincent, B., Fort, Y.: Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18, 382–388 (2011)

    CAS  Google Scholar 

  29. Ruan, B., Jacobi, A.M.: Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res. Lett. 7, 1–11 (2012)

    Google Scholar 

  30. Sonawane, S.S., Khedkar, R.S., Wasewar, K.L.: Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J. Exp. Nanosci. 10, 310–322 (2015)

    CAS  Google Scholar 

  31. Asadi, A., Asadi, M., Siahmargoi, M., Asadi, T., Gholami Andarati, M.: The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation. Int. J. Heat Mass Transf. 108, 191–198 (2017)

    CAS  Google Scholar 

  32. Li, F., Li, L., Zhong, G., Zhai, Y., Li, Z.: Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids. Int. J. Heat Mass Transf. 129, 278–286 (2019)

    CAS  Google Scholar 

  33. Buonomo, B., Manca, O., Marinelli, L., Nardini, S.: Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl. Therm. Eng. 91, 181–190 (2015)

    CAS  Google Scholar 

  34. Chen, Z., Shahsavar, A., Al-Rashed, A.A.A.A., Afrand, M.: The impact of sonication and stirring durations on the thermal conductivity of alumina-liquid paraffin nanofluid: an experimental assessment. Powder Technol. 360, 1134–1142 (2019)

    Google Scholar 

  35. Shahsavar, A., Salimpour, M.R., Saghafian, M., Shafii, M.B.: An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim. Acta 617, 102–110 (2015)

    CAS  Google Scholar 

  36. Xian, H.W., Sidik, N.A.C., Saidur, R.: Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int. Commun. Heat Mass Transf. 110, 104389 (2020)

    CAS  Google Scholar 

  37. Murshed, S.M.S., Leong, K.C., Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008)

    CAS  Google Scholar 

  38. Ravikumar, S.V., Haldar, K., Jha, J.M., Chakraborty, S., Sarkar, I., Pal, S.K., Chakraborty, S.: Heat transfer enhancement using air-atomized spray cooling with water-Al2O3 nanofluid. Int. J. Therm. Sci. 96, 85–93 (2015)

    CAS  Google Scholar 

  39. Das, P.K., Islam, N., Santra, A.K., Ganguly, R.: Experimental investigation of thermophysical properties of Al2O3–water nanofluid: role of surfactants. J. Mol. Liq. 237, 304–312 (2017)

    CAS  Google Scholar 

  40. Xia, G., Jiang, H., Liu, R., Zhai, Y.: Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int. J. Therm. Sci. 84, 118–124 (2014)

    CAS  Google Scholar 

  41. Mingzheng, Z., Guodong, X., Jian, L., Lei, C., Lijun, Z.: Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp. Therm. Fluid Sci. 36, 22–29 (2012)

    Google Scholar 

  42. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  43. Garg, J., Poudel, B., Chiesa, M., Gordon, J.B., Ma, J.J., Wang, J.B., Ren, Z.F., Kang, Y.T., Ohtani, H., Nanda, J., McKinley, G.H., Chen, G.: Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 103, 074301 (2008)

    Google Scholar 

  44. Kole, M., Dey, T.K.: Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids. Int. J. Therm. Sci. 62, 61–70 (2012)

    CAS  Google Scholar 

  45. Enomoto, N., Maruyama, S., Nakagawa, Z.: Agglomeration of silica spheres under ultrasonication Naoya. J. Mater. Res. 12, 1410–1415 (1997)

    CAS  Google Scholar 

  46. Suganthi, K.S., Rajan, K.S.: Temperature induced changes in ZnO-water nanofluid: zeta potential, size distribution and viscosity profiles. Int. J. Heat Mass Transf. 55, 7969–7980 (2012)

    CAS  Google Scholar 

  47. Sergis, A., Hardalupas, Y.: Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res. Lett. 6, 1–37 (2011)

    Google Scholar 

  48. Nwosu, P.N., Meyer, J., Sharifpur, M.: A review and parametric investigation into nanofluid viscosity models. J. Nanotechnol. Eng. Med. 5, 031008 (2014)

    Google Scholar 

  49. Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Dalkiliça, A.S., Wongwises, S.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Transf. 73, 114–123 (2016)

    CAS  Google Scholar 

  50. Khodabandeh, R., Jarahnejad, M., Haghighi, E.B., Nikkam, N., Palm, B., Toprak, M.S., Muhammed, M., Saleemi, M.: Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol. Acta 54, 411–422 (2015)

    Google Scholar 

  51. Mahbubul, I.M., Chong, T.H., Khaleduzzaman, S.S., Shahrul, I.M., Saidur, R., Long, B.D., Amalina, M.A.: Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Ind. Eng. Chem. Res. 53, 6677–6684 (2014)

    CAS  Google Scholar 

  52. Roy, G.C., Nguyen, C.T., Doucet, D., Suiro, S., Mare, T.: Temperature dependent thermal conductivity of alumina based nanofluid. In: de Vahl Davis, G., Leonardi, E. (Eds.), Proceedings of the 13th International Heat Transfer Conference (Begell House), 4 (2006)

  53. Esfe, M.H., Saedodin, S., Mahian, O., Wongwises, S.: Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J. Therm. Anal. Calorim. 117, 675–681 (2014)

    Google Scholar 

  54. Mojarrad, M.S., Keshavarz, A., Ziabasharhagh, M., Raznahan, M.M.: Experimental investigation on heat transfer enhancement of alumina/water and alumina/water-ethylene glycol nanofluids in thermally developing laminar flow. Exp. Therm. Fluid Sci. 53, 111–118 (2014)

    CAS  Google Scholar 

  55. Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)

    CAS  Google Scholar 

  56. Patel, H.E., Sundararajan, T., Das, S.K.: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J. Nanopart. Res. 12, 1015–1031 (2010)

    CAS  Google Scholar 

  57. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., Wu, Q.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568–4572 (2002)

    CAS  Google Scholar 

  58. Mintsa, H.A., Roy, G., Nguyen, C.T., Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48, 363–371 (2009)

    CAS  Google Scholar 

  59. Zhang, X., Gu, H., Fujii, M.: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp. Therm. Fluid Sci. 31, 593–599 (2007)

    CAS  Google Scholar 

  60. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7, 227–233 (2012)

    Google Scholar 

  61. Beck, M.P., Yuan, Y., Warrier, P., Teja, A.S.: The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanopart. Res. 11, 1129–1136 (2009)

    CAS  Google Scholar 

  62. Philip, J., Shima, P.D.: Thermal properties of nanofluids. Adv. Colloid Interface Sci. 183–184, 30–45 (2012)

    Google Scholar 

  63. James Clerk, M.: A treatise on electricity and magnetism. Claderon press, London (1881)

    Google Scholar 

  64. Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    CAS  Google Scholar 

  65. Timofeeva, E.V., Gavrilov, A.N., McCloskey, J.M., Tolmachev, Y.V., Sprunt, S., Lopatina, L.M., Selinger, J.V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 061203 (2007)

    Google Scholar 

  66. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  67. Maïga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G.: Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 35, 543–557 (2004)

    Google Scholar 

  68. Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A.A., Bavykin, D.V.: Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 183, 63–72 (2008)

    CAS  Google Scholar 

  69. Das, S.K., Choi, S.U.S., Patel, H.E.: Heat transfer in nanofluids—a review. Heat Transf. Eng. 27, 3–19 (2006)

    CAS  Google Scholar 

  70. Murshed, S.M.S., Leong, K.C., Yang, C.: Enhanced thermal conductivity of TiO2—water based nanofluids. Int. J. Therm. Sci. 44, 367–373 (2005)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monisha Michael.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michael, M., Zagabathuni, A., Sikdar, S. et al. Effect of dispersion behavior on the heat transfer characteristics of alumina nanofluid: an experimental investigation and development of a new correlation function. Int Nano Lett 10, 207–217 (2020). https://doi.org/10.1007/s40089-020-00306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00306-w

Keywords

Navigation