Skip to main content
Log in

An assessment of models for predicting refrigerant characteristics in adiabatic and non-adiabatic capillary tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Small vapor compression refrigeration systems incorporate a non-adiabatic capillary tube called a capillary tube-suction line heat exchanger (SLHX) in order to improve performance. The thermodynamic properties of the refrigerant in the capillary tube and suction pipe are influenced by associated phenomena. This study compares various relevant models. Based on the comparison recommended correlations were selected and the simulation results show that the friction factor model has the most dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A :

Area, m2

C :

Specific heat, J/kgK

D :

Diameter, m

Fr :

Froude number

f :

Friction factor

G :

Mass flux, kg/m2s

g :

Gravity acceleration, m/s2

h :

Heat transfer coefficient, W/m2K

I :

Specific enthalpy, kJ/kg

i :

Section number

k :

Thermal conductivity, W/mK

l :

Lackme constant

L :

Length, m

m :

Mass, kg

\( \dot{m} \) :

Mass flow rate, kg/s

Nu :

Nusselt number

Pr :

Prandtl number

P :

Pressure, kPa

\( \dot{Q} \) :

Heat transfer rate, kW

Re :

Reynolds number

T :

Temperature, K

U :

Overall heat transfer coefficient, W/m2K

V :

Velocity, m/s

v :

Specific volume, m3/kg

W :

Work rate, kW

We :

Weber number

w :

Width of solder joint, m

x :

Vapor quality

y :

Meta-stable mass fraction

z :

Section length, m

δ :

Soldered joint thickness, m

ɛ :

Wall roughness, mm

θ :

Inclination angle, deg

μ :

Viscosity, Ns/m2ν

π :

Pi parameter

ρ :

Density, kg/m3

σ :

Surface tension, N/m

τ :

Shear stress, N/m2

ϕ 2 :

Frictional two-phase multiplier

Cond :

Condenser

c :

Capillary tube

eva :

Evaporator

exp :

Experimental data

hx :

Heat exchanger

i :

Section symbol

in :

Inlet

l :

Liquid

lo :

Liquid only

o :

Outside

out :

Outlet

ref :

Refrigerant

s :

Suction line

sc :

Subcooled

sl :

Superheated liquid

sat :

Saturation

SLHX :

Suction line heat exchanger

sp :

Single-phase

sub :

Subcooling

sup :

Superheating

tp :

Two-phase

v :

Vapor

vo :

Vapor only

w :

Wall

References

  1. Koizumi H, Yokoyama K (1980) Characteristics of refrigerant flow in capillary tube. ASHRAE Trans 86:19–27

    Google Scholar 

  2. Chen ZH, Li RY, Lin S, Chen ZY (1990) A correlation for meta-stable flow of refrigerant 12 through capillary tubes. ASHRAE Trans 96:550–554

    Google Scholar 

  3. Dirik E, Inan C, Tanes MY (1994) Numerical and experimental studies on adiabatic and non-adiabatic capillary tubes with R-134a. International refrigeration conference at Purdue, Purdue University. West Lafayette, Indiana, USA

    Google Scholar 

  4. Peixoto RA, Bullard CW (1994) A simulation and design model for capillary tube-suction line heat exchanger. Internal refrigeration conference at Purdue University. West Lafayette, Indiana, USA

    Google Scholar 

  5. Bittle RR, Wolf DA, Pate MB (1998) A generalized performance prediction method for adiabatic capillary tubes. HVAC&R Res 4:27–44

    Google Scholar 

  6. Mezavila MM, Melo C (1996) CAPHEAT: an homogeneous model to simulate flow through non-adiabatic capillary tubes. International refrigeration conference at Purdue. West Lafayette, Indiana, USA

    Google Scholar 

  7. Xu B, Bansal PK (2002) Non-adiabatic capillary tube flow: a homogeneous model and process description. Appl Therm Eng 22:1801–1819

    Article  Google Scholar 

  8. Garcia-Valladares O (2002) Numerical simulation of non-adiabatic capillary tubes considering metastable region, part I: mathematical formulation and numerical model. Int J Refrig 30:642–653

    Article  Google Scholar 

  9. Sarker D, Kim L, Son K, Jeong JH (2010) An evaluation of constituent correlations for predicting refrigerant characteristics in adiabatic capillary tubes. Int J Air-Cond Refrig (in press)

  10. Khan MK, Kumar R, Sahoo PK (2008) Experimental and numerical investigation of the flow of R-134a through lateral type diabatic capillary tube. HVAC&R Res 14(6):871–904

    Google Scholar 

  11. Colebrook CF (1939) Turbulent flow in pipes with particular reference to the transition between the smooth and rough pipe laws. J Inst Civil Eng Lond 11:133–156

    Google Scholar 

  12. Churchill SW (1977) Frictional equation spans all fluid flow regimes. Chem Eng 84:91–92

    Google Scholar 

  13. Bittle RR, Pate MB (1996) A theoretical model for predicting adiabatic capillary tube performance with alternative refrigerants. ASHRAE Trans 102:52–64

    Google Scholar 

  14. McAdams WH, Wood WK, Bryan RL (1942) Vaporization inside horizontal tubes benzene-oil mixtures. J Heat Transf 64:193–200

    Google Scholar 

  15. Cicchitti A, Lombardi M, Silverstri G, Soldaini R, Zavattarelli (1960) Two-phase cooling experiments-pressure drop, heat transfer and burnout measurements. Energia Nucl 7:407–425

  16. Dukler AE, Wicks M, Cleveland RG (1964) Pressure drop and hold-up in two-phase flow. Part A-A comparison of existing correlation, part B-An approach through similarity analysis. AIChE J 10:38–51

    Article  Google Scholar 

  17. Lin S, Kwok CCK, Li RY (1991) Local frictional pressure drop during vaporization of R-12 through capillary tubes. Int J Multiph Flow 17:95–102

    Article  MATH  Google Scholar 

  18. Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem Eng Prog 45(1):39–48

    Google Scholar 

  19. Friedel L (1979) Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. European two-phase group meeting, Paper E2, Ispra, Italy

  20. Whalley PB (1980) Multiphase flow and pressure drop. In: Hewitt GF (ed) Heat exchanger design handbook, vol 2. Hemisphere, Washington DC, pp 2.3.3–2.3.11

  21. Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of tubular type. Univ Calif, Berkeley, Publ. Eng 2(13):443–461

    Google Scholar 

  22. Gnielinski V (1976) New equations for heat transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  23. Wu PY, Little WA (1984) Measuring of the heat transfer characteristics of gas flow in fine channel heat exchangers for micro miniature refrigerators. Cryogenics 24:415–420

    Article  Google Scholar 

  24. Lackme C (1979) Incompleteness of the flashing of supersaturated liquid and sonic ejection of the produced phases. Int J Multiph Flow 5:131–141

    Article  MATH  Google Scholar 

  25. Feburie V, Giot M, Granger S, Seynhaeve JM (1993) A model for choked flow through cracks with inlet subcooling. In J Multiph Flow 19:541–562

    Article  MATH  Google Scholar 

  26. Li RY, Lin S, Chen ZH (1990) Numerical modeling of thermodynamic non-equilibrium flow of refrigerant through capillary tubes. ASHRAE Trans 96:542–549

    Google Scholar 

  27. Melo C, Ferreira RTS, Neto CB, Goncalves JM, Mezavila MM (1999) An experimental analysis of adiabatic capillary tubes. Appl Therm Eng 19:669–684

    Article  Google Scholar 

  28. Mendoca KC, Melo RTS, Pereira RH (1998) Experimental study on lateral capillary tube-suction line heat exchangers. International refrigeration conference at Purdue. West Lafayette, Indiana, USA

    Google Scholar 

  29. Wolf DA, Pate MB (2002) Performance of a suction-line/capillary-tube heat exchanger with alternative refrigerants. ASHRAE research project RP-948, Final report

  30. Wolf DA, Bittle RR, Pate MB (1995) Adiabatic capillary-tube performance with alternative refrigerants. ASHRAE research project RP-762, Final report

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0072026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, LS., Son, Kd., Sarker, D. et al. An assessment of models for predicting refrigerant characteristics in adiabatic and non-adiabatic capillary tubes. Heat Mass Transfer 47, 163–180 (2011). https://doi.org/10.1007/s00231-010-0697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0697-0

Keywords

Navigation