Skip to main content
Log in

Efficiency and optimisation of fin with temperature-dependent thermal conductivity: a simplified solution

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An analytical simplified solution is proposed for temperature distribution and fin efficiency, when thermal conductivity is temperature dependent. An optimal linearization technique is used to solve the nonlinear equation. Based on classical solution, some accurate results are obtained and presented with thermal conductivity parameter and fin parameter. Arithmetic mean temperature is less precise than an equivalent thermal conductivity. Optimal thickness for rectangular fin is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

cross-sectional area

Bi :

Biot number Biαw/2λ 0

F :

factor

L :

fin length

m :

fin parameter \({m\, = \,{\sqrt \frac{2\alpha}{\lambda_{0}w}}}\)

q :

heat flux dissipated

S :

fin profile

T :

temperature

w :

fin thickness

x :

axial distance measured from fin base

α :

convection heat transfer coefficient

ε :

thermal conductivity parameter

η :

fin efficiency

θ :

dimensionless temperature θ = T/T 0

χ :

function

λ :

thermal conductivity λ =  λ0(1 + ɛθ)

λ + :

equivalent thermal conductivity

λ 0 :

constant thermal conductivity

λ m :

mean arithmetic thermal conductivity

opt:

optimal

0:

base of the fin

1:

classical with λ 0

2:

proposed with λ +

3:

classical with λ m

4:

Aziz’s solution

*:

unit width

+:

fin parameter

*:

corrected optimal width

References

  1. Aziz A, Enamul Hug SM (1975) Perturbation solution for convecting fin with variable thermal conductivity. J Heat Transfer Trans ASME 97:300

    Google Scholar 

  2. Aziz A (1977) Perturbation solution for convective fin with internal heat generation and temperature-dependent thermal conductivity. Int J Heat Mass Transfer 20:1253

    Article  Google Scholar 

  3. Bergles A (1997) Heat transfer enhancement-the encouragement and accommodation of high flux. J Heat Transfer 119:9

    Google Scholar 

  4. Blaquière A (1962) Une nouvelle méthode de linéarisation locale des opérateurs non linéaires: approximation optimale. In: 2nd Conference NonLinear Vibrations, Warsaw

  5. Bouaziz MN et al. (2001) Numerical study of non linear heat transfer in longitudinal fins. Int J Therm Sci 40(9):843

    Google Scholar 

  6. Chiu CH, Chen CK (2002) A decomposition method for solving the convective longitudinal fins with variable thermal conductivity. Int J Heat Mass Transfer 45:2067

    Article  MATH  Google Scholar 

  7. Clark JA (1968) Advances in heat transfer. Academic Press, New York

    Google Scholar 

  8. Gardner KA (1945) Efficiency of extended surface. Trans ASME 67:621

    Google Scholar 

  9. Hung HM, Appl FC (1967) Heat transfer of thin fins with temperature-dependent thermal properties and internal heat generation. ASME J Heat transfer 89:155

    Google Scholar 

  10. Jany P, Bejan A (1988) Ernst Schmidt’s approach to the fin optimization: an extension to fins with variable conductivity and the design of ducts for fluid flow. Int J Heat Mass Transfer 31(8):1635

    Article  Google Scholar 

  11. Krane RJ (1976) Discussion on a previously published paper by A. Aziz and SM Enamul Hug. J Heat Transfer Trans ASME 98:685

    Google Scholar 

  12. Luikov AV (1968) Analytical heat diffusion. Academic Press, New York

    Google Scholar 

  13. Muzzio A (1976) Approximate solution for convective fins with variable thermal conductivity. J Heat Transfer Trans ASME 98:680

    Google Scholar 

  14. Netrakanti MN, Huang CLD (1985) Optimization of annular fins with variable thermal parameters by invariant imbedding. ASME J Heat Transfer 107:966

    Article  Google Scholar 

  15. Touloukian YS et al. (1970) Thermophysical properties of matter. IFI/Plenum Press, Washington, pp 1–11

    Google Scholar 

  16. Vujanovic B (1973) Application of the optimal linearization method to the heat transfer problem. Int J Heat Mass Transfer 16:1111

    Article  Google Scholar 

  17. Yu LT, Chen CK (1998) Application of Taylor transformation to optimize rectangular fins with variable thermal properties. Appl Math Modell 22:11

    Article  MATH  Google Scholar 

  18. Yu LT, Chen CK (1999) Optimization of circular fins with variable thermal properties. J Franklin Inst 336:77

    Article  MATH  Google Scholar 

  19. Zubair SM and al. (1996) The optimal dimensions of circular fins with variable profile and temperature-dependent thermal conductivity. Int J Heat Transfer 39(16):3431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Bouaziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouaziz, M.N., Hanini, S. Efficiency and optimisation of fin with temperature-dependent thermal conductivity: a simplified solution. Heat Mass Transfer 44, 1–9 (2007). https://doi.org/10.1007/s00231-006-0225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0225-4

Keywords

Navigation