Skip to main content
Log in

Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A two-dimensional numerical simulation of natural convection in a rectangular enclosure heated from below and cooled from above has been conducted with non-Newtonian phase-change-material (PCM) microcapsulate slurry with latent heat capacities. The formulation of the mathematical model in dimensionless co-ordinates and discretization of the governing equations have been done using the finite volume method. Both natural convection and heat transfer characteristics are discussed about natural convection with PCM microcapsulate slurry, which exhibits the pseudoplastic non-Newtonian fluid behavior and a peak value in the specific heat capacity with latent heat. The viscosity of the present PCM microcapsulate slurry is assumed to follow the Ostwald-de Waele power law fluid model with the power-law index n and the consistency coefficient K. The effects of phase-change material, the mass concentration, and the aspect ratio Ar on the natural convection heat transfer are described, respectively. By comparing with the results of microcapsule slurry without phase change, the enhancement in heat transfer is found in microcapsule slurry with phase change during the phase change temperature range. Numerical simulations are performed in the following parametric ranges: the width–height aspect ratio of the enclosure Ar from 2 to 20, the mass concentrations C m of the slurry from 10 to 40%, power law index n of the slurry from 0.89 to 1.0 and Rayleigh numbers Ra ranges from 103 to 107.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Ar:

aspect ratio = W/H

a :

thermal diffusivity (m2 s−1)

B :

dimensionless term defined in Eq. 10

C m :

mass concentration (%)

C p :

apparent specific heat including latent heat (kJ kg−1 K−1)

C p25 :

specific heat at 25°C (kJ kg−1 K−1)

D :

depth of rectangular enclosure (m)

e :

strain rate (s−1)

\(\bar{e}\) :

dimensionless strain rate

g :

gravitational acceleration (m s−2)

Gr:

Grashof number = Ra/Pr

H :

height of rectangular enclosure (m)

k :

thermal conductivity of the PCM slurry (W m−1 K−1)

K :

consistency index of power law model fluids (Pa sn)

n :

pseudoplastic index of power law model fluid

Nu:

Nusselt number = α·H/k

p :

pressure (Pa)

P * :

dimensionless pressure

Pr:

Prandtl number, in Eq. 8

Q :

ratio of specific heat capacity = C p /C p0

R :

ratio of density = ρ /ρ0

Ra:

Raleigh number, in Eq. 9

S x :

dimensionless term defined in Eq. 11

S y :

dimensionless term defined in Eq. 12

t :

time (s)

t * :

dimensionless time = t/(H 2/a 0)

T :

temperature (°C)

u :

velocity in horizontal x coordinate (m s−1)

U :

dimensionless velocity in horizontal x coordinate

v :

velocity in vertical y coordinate (m s−1)

V :

dimensionless velocity in vertical y coordinate

W :

width of rectangular enclosure (m)

X, Y :

coordinates in dimensionless form, x/H, y/H

x, y :

coordinates

α:

heat transfer coefficient (W m−2 K−1)

\(\beta\) :

volumetric expansion coefficient (K−1)

μ:

dynamic viscosity of Newtonian fluid or PCM slurry (Pa s, Pa sn)

Θ:

dimensionless temperature

\(\tau\) :

shear stress (N m−2)

\(\bar{\tau }\) :

dimensionless stress rate = τ/[K(a 0/H 2)n]

\(\rho\) :

density (kg m−3)

0:

reference state

b:

bottom plate

C:

cooling plate

H:

heating plate

n :

without phase change material

w :

with phase change material

References

  1. Inaba H, Dai C, Horibe A (2003) Numerical simulation of Rayleigh–Bénard convection in non-Newtonian phase-change-material slurry. Int J Therm Sci 42:471–480

    Article  Google Scholar 

  2. Inaba H, Morita S (1995) Cold heat-release characteristics of phase-change by air-emulsion direct-contact heat exchange method. Int J Heat Mass Transf 39(9):1797–1803

    Article  Google Scholar 

  3. Uroš S (2004) An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf 47:2841–2847

    Article  Google Scholar 

  4. Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  5. Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluid. Int J Therm Sci 39:991–1003

    Article  Google Scholar 

  6. Inaba H, Kim M-J, Horibe A (2004) Melting heat transfer characteristics of microencapsulated phase change material slurry with plural microcapsules having different diameters. J Heat Transf (126):558–565 (DOI: 10.1115/1.1773584)

  7. Ozoe H, Sayama H, Churchill SW (1977) Natural convection patterns in a long inclined rectangular box heated from below. Int J Heat Mass Transf 20(2):123–129

    Article  Google Scholar 

  8. Geol M, Roy SK, Sengupta S (1994) Laminar forced convection heat transfer in microcapsulated phase change material suspensions. Int J Heat Mass Transf 37(4):593–604

    Article  Google Scholar 

  9. Inaba H, Morita S (1995) Flow and cold heat-storage characteristics of phase-change emulsion in a coiled double-tube heat exchanger. ASME J Heat Transf 117:440–446

    Google Scholar 

  10. Inaba H, Dai C, Horibe A (2003) Natural convection heat transfer of microemulsion phase-change-material slurry in rectangular cavities heated from below and cooling from above. Int J Heat Mass Transf 46:4427–4438

    Article  Google Scholar 

  11. Viswanath R, Jalura Y (1993) A comparison of different solution methodologies for melting and solidification problems in enclosures. Numer Heat transfer Part B 24:77–105

    Google Scholar 

  12. D’Orazio MC, Cianfrin C, Corcione M (2004) Rayleigh–Bénard convection in tall rectangular enclosures. Int J Therm Sci 43:133–144

    Google Scholar 

  13. Guo Y, Bathe K-J (2002) A numerical study of a natural convection flow in a cavity. Int J Numer Meth Fluids 40:1045–1057 (DOI: 10.1002/fld.391)

    Google Scholar 

  14. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    MATH  Google Scholar 

  15. Said SAM, Habib MA, Badr HM, Anwar S (2005) Numerical investigation of natural convection inside an inclined parallel-walled channel. Int J Numer Meth Fluids (DOI: 10.1002/fld.1013)

  16. Corcione M (2003) Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above. Int J Therm Sci 40:199–208

    Article  Google Scholar 

  17. Gelfgat AYu (1999) Different modes of Rayleigh–Bénard instability in two- and three-dimensional rectangular enclosures. J Comput Phys 156:300–324

    Article  Google Scholar 

  18. Pallares J, Grau FX, Giralt F (1999) Flow transitions in laminar Rayleigh–Bénard convection in a cubical cavity at moderate Rayleigh numbers. Int J Heat Mass Transf 42:753–769

    Article  Google Scholar 

  19. Kim GB, Hyum JM, Kwak HS (2003) Transient buoyant convection of a power-law non-Newtonain fluid in an enclosure. Int J Heat Mass Transf 46:3605–3617

    Article  Google Scholar 

  20. Gorla RSR, Kumari M (2003) Free convection in non-Newtonian fluids along a horizontal plate in porous medium. Heat Mass Transf 30:101–106

    Google Scholar 

  21. Demir H, Akyildiz FT (2000) Unsteady thermal convection of a non-Newtonian fluid. Int J Eng Sci 38:1923–1938

    Article  Google Scholar 

  22. Lorezini G, Biserni C (2004) Numerical investigation on mixed convection in a non-Newtonian fluid inside a vertical duct. Int J Therm Sci 43:1153–1160

    Article  Google Scholar 

  23. Paramentier EM (1978) A study of thermal convection in non-Newtonian fluids. J Fluid Mech 84:1–11

    Article  Google Scholar 

  24. Pittman JFT, Richardson JF, Sherrard CP (1999) An experimental study of heat transfer by laminar natural convection between an electrically-heated vertical plate and both Newtonian and non-Newtonian fluids. Int J Heat Mass Transf 42:657–671

    Article  Google Scholar 

  25. Datta P, Sengupta S, Singh T (1996) Rayleigh and Prandtl number effects in natural convection in enclosures with microcapsulated phase change materials. In: Symposium on 33rd Heat transfer in Japan, pp 225–226

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Inaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, H., Zhang, Y., Horibe, A. et al. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above. Heat Mass Transfer 43, 459–470 (2007). https://doi.org/10.1007/s00231-006-0121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0121-y

Keywords

Navigation