Skip to main content
Log in

Unsteady forced convection heat/mass transfer from a flat plate

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Numerical methods are used to investigate the transient, forced convection heat/mass transfer from a finite flat plate to a steady stream of viscous, incompressible fluid. The temperature/concentration inside the plate is considered uniform. The heat/mass balance equations were solved in elliptic cylindrical coordinates by a finite difference implicit ADI method. These solutions span the parameter ranges 10≤ Re ≤ 400 and 0.1 ≤ Pr ≤ 10. The computations were focused on the influence of the product (aspect ratio) × (volume heat capacity ratio/Henry number) on the heat/mass transfer rate. The occurrence on the plate’s surface of heat/mass wake phenomena was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

c P :

Heat capacity

C :

Concentration of the transferring species

D :

Diffusion coefficient of the transferring species in the fluid phase

L :

Plate length

Pr :

Fluid phase Prandtl (Schmidt) number, Pr = ν/α (D)

Re :

Reynolds number based on plate length, Re = U L

t :

Time

T :

Temperature

x :

Streamwise (horizontal) coordinate

X :

Non-dimensional streamwise coordinate, X = x/L

y :

Transverse (vertical) coordinate

Y :

Non-dimensional transverse coordinate, Y = y/L

Z :

Dimensionless temperature/concentration defined by the relations, \( Z_{{({\text{p}})}} = \frac{{T_{{({\text{p}})}} - T_{\infty } }} {{T_{{{\text{p}},0}} - T_{\infty } }}\quad {\text{or}}\quad Z_{{\text{p}}} = \frac{{C_{{\text{p}}} - C_{\infty } \,\Xi }} {{C_{{{\text{p}},0}} - C_{\infty } \,\Xi }},\quad \quad Z = \frac{{C - C_{\infty } }} {{C_{{{\text{p}},0}} /\Xi - C_{\infty } }} \)

α:

Thermal diffusivity of the fluid phase

ɛ:

Aspect ratio

η:

Elliptical cylindrical coordinate defined by Eq. 1

ν:

Kinematic viscosity of the fluid phase

ρ:

Density

τ:

Dimensionless time or Fourier number, τ = 4 t α (D)/ L2

ω:

Dimensionless vorticity

ξ:

Elliptical cylindrical coordinate defined by Eq. 1

ψ:

Dimensionless stream function

Ξ:

p c P , p )/(ρ c c P c ) or Henry number

c:

Refers to the continuous (fluid) phase

p :

Refers to plate

0:

Initial conditions

∞:

Large distance from the plate

References

  1. Perelman YL (1961) On conjugate problems of heat transfer. Int J Heat Mass Transfer 3:293

    Article  Google Scholar 

  2. Luikov AV, Aleksashenko VA, Aleksashenko AA (1971) Analytical methods of solution of conjugate problems in convective heat transfer. Int J Heat Mass Transfer 14:1047

    Article  Google Scholar 

  3. Sakakibara M, Mori S, Tanimoto A (1973) Effect of wall conduction on convective heat transfer with laminar boundary layer. Heat Transfer—Jpn Res 2:94

    Google Scholar 

  4. Luikov AV (1974) Conjugate convective heat transfer problems. Int J Heat Mass Transfer 17:257

    Article  Google Scholar 

  5. Chida K, Katto Y (1976) Study of conjugate heat transfer by vectorial dimensional analysis. Int J Heat Mass Transfer 19:453

    Article  Google Scholar 

  6. Chida K, Katto Y (1976) Conjugate heat transfer of continuously moving surfaces. Int J Heat Mass Transfer 19:461

    Article  Google Scholar 

  7. Payvar P (1977) Convective heat transfer to laminar flow over a plate of finite thickness. Int J Heat Mass Transfer 20:431

    Article  Google Scholar 

  8. Karvinen R (1978) Some new results for conjugate heat transfer in a flat plate. Int J Heat Mass Transfer 21:1261

    Article  Google Scholar 

  9. Gosse J (1980) Analyse simplifiée du couplage conduction—convection pour un écoulement à couche limite laminaire sur une plaque plane. Rev Gen Therm 228:967

    Google Scholar 

  10. Sparrow EM, Chyu MK (1982) Conjugate forced convection—conduction analysis of heat transfer in a plate fin. J Heat Transfer 104:204

    Google Scholar 

  11. Ramadhyani S, Moffat DF, Incropera FP (1985) Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. Int J Heat Mass Transfer 28:1945

    Article  Google Scholar 

  12. Pozzi A, Lupo M (1989) The coupling of conduction with forced convection over a flat plate. Int J Heat Mass Transfer 32:1207

    Article  Google Scholar 

  13. Mori S, Nakagawa H, Tanimoto A, Sakakibara M (1991) Heat and mass transfer with a boundary layer flow past a plate of finite thickness. Int J Heat Mass Transfer 34:2899

    Article  Google Scholar 

  14. Rizk TA, Kleinstreuer C, Özisik MN (1992) Analytic solution to the conjugate heat transfer problem of flow past a heated block. Int J Heat Mass Transfer 35:1519

    Article  Google Scholar 

  15. Prasad BVSSS, Dey Sarkar S (1993) Conjugate laminar forced convection from a flat plate with imposed pressure gradient. J Heat Transfer 115:469

    Google Scholar 

  16. Pozzi A, Bassano E, Socio Lde (1993) Coupling of conduction and forced convection past an impulsively started infinite flat plate. Int J Heat Mass Transfer 36:1799

    Article  Google Scholar 

  17. Pop I, Ingham DB (1993) A note on conjugate forced convection boundary-layer flow past a flat plate. Int J Heat Mass Transfer 36:3873

    Article  Google Scholar 

  18. Liu T, Campbell BT, Sullivan JP (1994) Surface temperature of a hot film on a wall in shear flow. Int J Heat Mass Transfer 37:2809

    Article  Google Scholar 

  19. Sugavanam R, Ortega A, Choi CY (1995) A numerical investigation of conjugate heat transfer from a flush heat source on a conductive board in laminar channel flow. Int J Heat Mass Transfer 38:2969

    Article  Google Scholar 

  20. Cole KD (1997) Conjugate heat transfer from a small heated strip. Int J Heat Mass Transfer 40:2709

    Article  Google Scholar 

  21. Trevino C, Becerra G, Mendez F (1997) The classical problem of convective heat transfer in laminar flow over a thin finite thickness plate with uniform temperature at the lower surface. Int J Heat Mass Transfer 40:3577

    Article  Google Scholar 

  22. Vynnycky M, Kimura S, Kanev K, Pop I (1998) Forced convection heat transfer from a flat plate: the conjugate problem. Int J Heat Mass Transfer 41:45

    Article  Google Scholar 

  23. Pozzi A, Tognaccini R (2000) Coupling of conduction and convection past an impulsively started semi-infinite flat plate. Int J Heat Mass Transfer 43:1121

    Article  Google Scholar 

  24. Pozzi A, Tognaccini R (2001) Symmetrical impulsive thermo-fluid dynamic field along a thick plate. Int J Heat Mass Transfer 44:3281

    Article  Google Scholar 

  25. Stein CF, Johansson P, Bergh J, Löfdahl L, Sen M, Gad-el-Hak M (2002) An analytical asymptotic solution to a conjugate heat transfer problem. Int J Heat Mass Transfer 45:2485

    Article  Google Scholar 

  26. Juncu Gh, Mihail R (1990) Numerical solution of the steady incompressible Navier–Stokes equations for the flow past a sphere by a multigrid defect correction technique. Int J Num Meth Fluids 11:379

    Google Scholar 

  27. Juncu Gh (1999) A numerical study of steady viscous flow past a fluid sphere. Int J Heat Fluid Flow 20:414

    Article  Google Scholar 

  28. Dennis SCR, Dunwoody J (1966) The steady flow of a viscous fluid past a flat plate. J Fluid Mech 24:577

    Google Scholar 

  29. Robertson GE, Seinfeld JH, Leal LG (1973) Combined forced and free convection flow pas a horizontal flat plate. AIChE J 19:998

    Article  Google Scholar 

  30. Leal LG (1973) Steady separated flow in a linearly decelerated free stream. J Fluid Mech 59:513

    Google Scholar 

  31. Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98:819

    Google Scholar 

  32. Hemker PW (1977) A numerical study of stiff two-point boundary problems. PhD Thesis, Amsterdam, Mathematisch Centrum

  33. Dennis SCR, Smith N (1966) Forced convection from a heated flat plate. J Fluid Mech 24:509

    Google Scholar 

  34. van Dyke MD (1962) Higher approximations in boundary-layer theory. II. Application to leading edges. J Fluid Mech 14:481

    Google Scholar 

  35. Juncu Gh (2004) Unsteady conjugate heat/mass transfer from a circular cylinder in laminar crossflow at low Reynolds numbers. Int J Heat Mass Transfer 47:2469

    Article  Google Scholar 

  36. Brauer H (1978) Unsteady state mass transfer through the interface of spherical particles – I + II. Int J Heat Mass Transfer 21:445

    Article  Google Scholar 

  37. Abramzon B, Elata C (1984) Unsteady heat transfer from a single sphere in Stokes flow. Int J Heat Mass Transfer 27:687

    Article  Google Scholar 

  38. Juncu Gh (2001) Unsteady heat and/or mass transfer from a fluid sphere in creeping flow. Int J Heat Mass Transfer 44:2239

    Article  Google Scholar 

  39. Zinnes AE (1970) The coupling of conduction with laminar natural convection from a vertical flat plate with arbitrary surface heating. J Heat Transfer 92:528

    Google Scholar 

  40. Juncu Gh (1998) The influence of the continuous phase Pe numbers on thermal wake phenomenon. Heat Mass Transfer (Wärme–und Stoffübertragung) 34:203

    Article  Google Scholar 

  41. Schlichting H (1968) Boundary layer theory. McGraw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. Juncu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juncu, G. Unsteady forced convection heat/mass transfer from a flat plate. Heat Mass Transfer 41, 1095–1102 (2005). https://doi.org/10.1007/s00231-005-0641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-005-0641-x

Keywords

Navigation