Skip to main content
Log in

Sums of values represented by a quadratic form

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let q be a quadratic form over a field K of characteristic different from 2. We investigate the properties of the smallest positive integer n such that −1 is a sum of n values represented by q in several situations. We relate this invariant (which is called the q-level of K) to other invariants of K such as the level, the u-invariant and the Pythagoras number of K. The problem of determining the numbers which can be realized as a q-level for particular q or K is studied. We also observe that the q-level naturally emerges when one tries to obtain a lower bound for the index of the subgroup of non-zero values represented by a Pfister form q. We highlight necessary and/or sufficient conditions for the q-level to be finite. Throughout the paper, special emphasis is given to the case where q is a Pfister form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becher, K.J.: On the number of square classes of a field of finite level. Proceedings of the Conference on Quadratic Forms and Related Topics, Baton Rouge, LA. Documenta Mathematica, pp. 65–84 (2001)

  2. Becher K.J.: Minimal weakly isotropic forms. Math Z 252(1), 91–102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassels J.W.S., Ellison W.J., Pfister A.: On sums of squares and on elliptic curves over function fields. J Number Theory 3, 125–149 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colliot-Thélène J.-L., Jannsen U.: Sommes des carrés dans les corps de fonctions. C R Acad Sci Paris, Sér I 312, 759–762 (1991)

    MATH  Google Scholar 

  5. Djoković D.Z.: Level of a field and the number of square classes. Math. Z. 135, 267–269 (1973/74)

    Article  MathSciNet  Google Scholar 

  6. Hoffmann D.W.: Isotropy of quadratic forms over the function field of a quadric. Math Z 220, 461–476 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoffmann D.W.: Pythagoras numbers of fields. J Am Math Soc 12, 839–848 (1999)

    Article  MATH  Google Scholar 

  8. Hoffmann D.W.: Isotropy of quadratic forms and field invariants. Quadratic forms and their applications (Dublin 1999), Contemporary Mathematics, vol. 272, pp. 73–102. American Mathametical Society, Providence (2000)

  9. Hoffmann D.W.: Levels of quaternion algebras. Arch. Math. (Basel) 90(5), 401–411 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoffmann D.W.: Levels and sublevels of quaternion algebras. Math Proc Royal Ir Acad 110((1), 95–98 (2010)

    Google Scholar 

  11. Knebusch M., Rosenberg A., Rosenberg A., Rosenberg A.: Structure of Witt rings, quotients of abelian group rings, and orderings of fields. Bull Am Math Soc 77, 205–210 (1971)

    Article  MATH  Google Scholar 

  12. Kneser H.: Verschwindende Quadratsummen in Körpern. Jahresber Dtsch Math Ver 44, 143–146 (1934)

    Google Scholar 

  13. Krüskemper M., Wadsworth A.: A quaternion algebra of sublevel 3. Bull Soc Math Belg Sér B 43(2), 181–185 (1991)

    MATH  Google Scholar 

  14. Lam T.-Y.: Introduction to quadratic forms over fields. Graduate Studies in Mathematics, vol. 67. American Mathematical Society (AMS), Providence (2005)

  15. Leep D.B.: Levels of division algebras. Glasgow Math J 32(3), 365–370 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leep D.B.: A historical view of the Pythagoras numbers of fields. Quadratic forms: algebra, arithmetic, and geometry, pp. 271–288. Contemporary Mathematics, vol. 493, American Mathematical Society, Providence (2009)

  17. Lewis D.W.: New improved exact sequences of Witt groups. J Algebra 74(1), 206–210 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewis D.W.: Levels and sublevels of division algebras. Proc Royal Ir Acad A 87(1), 103–106 (1987)

    MATH  Google Scholar 

  19. Lewis D.W.: Sums of hermitian squares. J Algebra 115(2), 466–480 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewis D.W.: Levels of quaternion algebras. Quadratic forms and real algebraic geometry (Corvallis, OR, 1986). Rocky Mt J Math 19(3), 787–792 (1989)

    Article  MATH  Google Scholar 

  21. Lewis D.W.: Levels of fields and quaternion algebras: a survey. Théorie des nombres, Années 1996/97–1997/98, p. 9, Publ. Math. UFR Sci. Tech. Besançon, Univ. Franche-Comté, Besançon (1999)

  22. Merkurjev A.S.: On the norm residue symbol of degree 2. Dokladi Akad. Nauk. SSSR vol. 261 (1981) pp. 542–547. (English translation: Soviet Math. Doklady vol. 24 (1981) 546–551.)

  23. O’Shea J.: Levels and sublevels of composition algebras. Indag. Math. (N.S.) 18(1), 147–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pfister A.: Zur Darstellung von −1 als Summe von Quadraten in einem Körper. J London Math Soc 40, 159–165 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pfister A.: Quadratische Formen in beliebigen Körpern. Invent Math 1, 116–132 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pfister A.: Zur Darstellung definiter Funktionen als Summe von Quadraten. Invent Math 4, 229–237 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pfister A.: Quadratic Forms with Applications to Algebraic Geometry and Topology. London Mathematical Society Lecture Note Series, 217. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  28. Pourchet Y.: Sur la représentation en somme de carrés des polynômes à à une indéterminée sur un corps de nombres algébriques. Acta Arith 19, 89–104 (1971)

    MathSciNet  MATH  Google Scholar 

  29. Prestel A.: Quadratische Semi-Ordnungen und quadratische Formen. Math Z 133, 319–342 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scharlau W.: Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, vol. 270. Springer, Berlin (1985)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Grenier-Boley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berhuy, G., Grenier-Boley, N. & Mahmoudi, M.G. Sums of values represented by a quadratic form. manuscripta math. 140, 531–556 (2013). https://doi.org/10.1007/s00229-012-0551-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0551-4

Mathematics Subject Classification

Navigation