Skip to main content
Log in

Nonlinear differential equations satisfied by certain classical modular forms

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

A unified treatment is given of low-weight modular forms on Γ 0(N), N = 2,3,4, that have Eisenstein series representations. For each N, certain weight-1 forms are shown to satisfy a coupled system of nonlinear differential equations, which yields a single nonlinear third-order equation, called a generalized Chazy equation. As byproducts, a table of divisor function and theta identities is generated by means of q-expansions, and a transformation law under Γ 0(4) for the second complete elliptic integral is derived. More generally, it is shown how Picard–Fuchs equations of triangle subgroups of PSL(2, R), which are hypergeometric equations, yield systems of nonlinear equations for weight-1 forms, and generalized Chazy equations. Each triangle group commensurable with Γ(1) is treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. No. 149 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, UK (1991)

  2. Ablowitz M.J., Chakravarty S., Hahn H.: Integrable systems and modular forms of level 2. J. Phys. A 39(50), 15341–15353 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berndt B.C.: Fragments by Ramanujan on Lambert series. In: Kanemitsu, S., Gyr, K. (eds) Number Theory and Its Applications, No. 2 in Dev. Math., pp. 35–49. Kluwer, Dordrecht (1999)

    Google Scholar 

  4. Berndt B.C.: Number Theory in the Spirit of Ramanujan, Student Mathematical Library, vol. 34. American Mathematical Society (AMS), Providence, RI (2006)

    Google Scholar 

  5. Berndt B.C., Bhargava S., Garvan F.G.: Ramanujan’s theories of elliptic functions to alternative bases. Trans. Am. Math. Soc. 347(11), 4163–4244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borwein, J.M., Borwein, P.B.: Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 4. Wiley, New York (1987)

  7. Borwein J.M., Borwein P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)

    Article  MATH  Google Scholar 

  8. Brezhnev, Y.V.: On functions of Jacobi and Weierstrass (I) (2006), preprint. Available on-line as arXiv:math/0601371

  9. Bureau F.J.: Sur des systèmes différentiels non linéaires du troisième ordre et les équations différentielles non linéaires associées. Acad. Roy. Belg. Bull. Cl. Sci. (5) 73(6–9), 335–353 (1987)

    MATH  MathSciNet  Google Scholar 

  10. Chakravarty S., Ablowitz M.J.: Parameterizations of the Chazy equation. Stud. Appl. Math. 124(2), 105–135 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chazy J.: Sur les équations différentielles du troisième et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Acta Math. 34, 317–385 (1911)

    Article  MATH  MathSciNet  Google Scholar 

  12. Clarkson P.A., Olver P.J.: Symmetry and the Chazy equation. J. Diff. Equ. 124(1), 225–246 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen, H., Oesterlé, J.: Dimensions des espaces de formes modulaires. In: Modular Functions of One Variable, VI, no. 627 in Lecture Notes in Mathematics, pp. 69–78. Springer, New York (1977)

  14. Diamond F., Shurman J.: A First Course in Modular Forms. Springer, New York (2005)

    MATH  Google Scholar 

  15. Ehrenpreis L.: Singularities, functional equations, and the circle method. In: Andrews, G.E., Bressoud, D.M., Parson, L.A. (eds) The Rademacher Legacy to Mathematics, no. 166 in Contemporary Mathematics, pp. 35–80. American Mathematical Society, Providence, RI (1994)

    Google Scholar 

  16. Enneper A.: Elliptische Functionen: Theorie und Geschichte, 2nd edn. Nebert-Verlag, Halle, Germany (1890)

    MATH  Google Scholar 

  17. Fine N.J.: Basic Hypergeometric Series and Applications, No. 27 in Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1988)

    Google Scholar 

  18. Ford L.R.: Automorphic Functions, 2nd edn. Chelsea Publishing Co., New York (1951)

    Google Scholar 

  19. Glaisher J.W.L.: On the quantities K, E, J, G, K′, E′, J′, G′ in elliptic functions. Quart. J. Pure Appl. Math. 20, 313–361 (1885a)

    Google Scholar 

  20. Glaisher J.W.L.: On certain sums of products of quantities depending upon the divisors of a number. Messenger Math. 15, 1–20 (1885b)

    Google Scholar 

  21. Hahn H.: Eisenstein series associated with Γ 0(2). Ramanujan J. 15(2), 235–257 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harnad J., McKay J.: Modular solutions to equations of generalized Halphen type. Proc. Roy. Soc. Lond. Ser. A 456(1994), 261–294 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Heninger N., Rains E.M., Sloane N.J.A.: On the integrality of nth roots of generating functions. J. Combin. Theory Ser. A 113(8), 1732–1745 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jacobi C.G.J.: Über die Differentialgleichung welcher die Reihen 1±2q + 2q 4±2q 9 + etc., 2q 1/4 + 2q 9/4 + 2q 25/4 + etc. Genüge leisten. J. Reine Angew. Math. 36, 97–112 (1848)

    MATH  Google Scholar 

  25. Kaneko M., Koike M.: Quasimodular solutions of a differential equation of hypergeometric type. In: Hashimoto, K., Miyake, K., Nakamura, H. (eds) Galois Theory and Modular Forms, no. 11 in Dev. Math., pp. 329–336. Kluwer, Boston (2004)

    Google Scholar 

  26. Leopoldt H.W.: Eine Verallgemeinerung der Bernoullischen Zahlen. Abh. Math. Sem. Univ. Hamburg 22, 131–140 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  27. Maier R.S.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24(1), 1–73 (2009)

    MATH  MathSciNet  Google Scholar 

  28. Martin Y., Ono K.: Eta-quotients and elliptic curves. Proc. Am. Math. Soc. 125(11), 3169–3176 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Milne S.C.: Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6(1), 7–149 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ohyama Y.: Systems of nonlinear differential equations related to second order linear equations. Osaka J. Math. 33(4), 927–949 (1996)

    MATH  MathSciNet  Google Scholar 

  31. Ono K., Robbins S., Wahl P.T.: On the representation of integers as sums of triangular numbers. Aequ. Math. 50(1–2), 73–94 (1995)

    Article  MATH  Google Scholar 

  32. Rademacher H.: Topics in Analytic Number Theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 169. Springer, New York (1973)

    Google Scholar 

  33. Ramamani, V.: On some identities conjectured by Ramanujan in his lithographed notes connected with partition theory and elliptic modular functions—their proofs—interconnection with various other topics in the theory of numbers and some generalizations. Ph.D. thesis, University of Mysore, Mysore, India (1970)

  34. Ramamani V.: On some algebraic identities connected with Ramanujan’s work. In: Thakare, N.K., Sharma, K.C., Raghunathan, T.T. (eds) Ramanujan International Symposium on Analysis (Pune, 1987), pp. 277–291. Macmillan of India, New Delhi (1989)

    Google Scholar 

  35. Rankin R.A.: The construction of automorphic forms from the derivatives of a given form. J. Indian Math. Soc. (N.S.) 20, 103–116 (1956a)

    MATH  MathSciNet  Google Scholar 

  36. Rankin R.A.: Elementary proofs of relations between Eisenstein series. Proc. Roy. Soc. Edinb. Ser. A 76(2), 107–117 (1956b)

    MathSciNet  Google Scholar 

  37. Rankin R.A.: Sums of squares and cusp forms. Am. J. Math. 87, 857–860 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  38. Resnikoff H.L.: A differential equation for the theta function. Proc. Nat. Acad. Sci. USA 53, 692–693 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schoeneberg B.: Elliptic Modular Functions, Die Grundlehren der mathematischen Wissenschaften, vol. 203. Springer, New York (1974)

    Google Scholar 

  40. Stiller P.F.: Classical automorphic forms and hypergeometric functions. J. Number Theory 28(2), 219–232 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  41. Takeuchi K.: Arithmetic triangle groups. J. Math. Soc. Jpn. 29(1), 91–106 (1977a)

    Article  MATH  Google Scholar 

  42. Takeuchi K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1), 201–212 (1977b)

    MATH  MathSciNet  Google Scholar 

  43. Takhtajan, L.A.: A simple example of modular forms as tau-functions for integrable equations. Theor. Math. Phys. 93(2), 1308–1317 (1992). Russian original in Teoret. Mat. Fiz. 93(2), 330–341 (1992)

  44. Tricomi F.: Funzioni Ellittiche, 2nd edn. N. Zanichelli, Bologna, Italy (1951)

    MATH  Google Scholar 

  45. van der Pol, B.: On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications, I, II. Indag. Math. 13, 261–271, 272–284 (1951)

    Google Scholar 

  46. van der Pol B.: The representation of numbers as sums of eight, sixteen and twenty-four squares. Indag. Math. 16, 349–361 (1954)

    Google Scholar 

  47. Zudilin W.: The hypergeometric equation and Ramanujan functions. Ramanujan J. 7(4), 435–447 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, R.S. Nonlinear differential equations satisfied by certain classical modular forms. manuscripta math. 134, 1–42 (2011). https://doi.org/10.1007/s00229-010-0378-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0378-9

Mathematics Subject Classification (2000)

Navigation