Skip to main content

Advertisement

Log in

Downregulation of ABCB1 gene in patients with total hip or knee arthroplasty influences pharmacokinetics of rivaroxaban: a population pharmacokinetic-pharmacodynamic study

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Rivaroxaban is a substrate for ABCB1 transporter and is commonly used in patients undergoing hip or knee replacement surgery for thromboprophylaxis. The objective of this study was to develop a population pharmacokinetic-pharmacodynamic (PK-PD) model to investigate the influence of ABCB1 gene expression and polymorphism on rivaroxaban exposure and anticoagulation effects.

Methods

Five blood samples per patient were collected during 5 days after the surgery for the determination of rivaroxaban concentration in plasma and for determination of prothrombin time and partial thromboplastin time. Non-linear mixed effects model was used for a population PK-PD analysis and for testing covariate effects.

Results

A one-compartment PK model with first-order absorption adequately described the pharmacokinetic data. The typical oral clearance (CL/F) was 6.12 L/h (relative standard error, 15.8%) and was associated with ABCB1 expression. Compared to base line before the surgery, a significant ABCB1 downregulation was observed 5 days after the surgery (p < 0.001). Prothrombin time and partial thromboplastin time were both linearly associated to the logarithm of the rivaroxaban plasma concentration.

Conclusions

We confirmed that variable rivaroxaban CL/F is associated with ABCB1 expression, which is in accordance with previous studies on P-glycoprotein involvement in rivaroxaban PK. Furthermore, we observed the downregulation of ABCB1 expression after the surgery. The cause remains unclear and further research is needed to explain the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agnelli G (2004) Prevention of venous thromboembolism in surgical patients. Circulation 110:4–13. https://doi.org/10.1161/01.CIR.0000150639.98514.6c

    Article  Google Scholar 

  2. Geerts WH, Bergqvist D, Pineo GF, Heit JA, Samama CM, Lassen MR, Colwell CW (2008) Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133:381S–453S. https://doi.org/10.1378/chest.08-0656

    Article  CAS  PubMed  Google Scholar 

  3. Gillespie W, Murray D, Gregg PJ, Warwick D (2000) Risks and benefits of prophylaxis against venous thromboembolism in orthopaedic surgery. J Bone Joint Surg Br 82:475–479. https://doi.org/10.1302/0301-620X.82B4.10452

    Article  CAS  PubMed  Google Scholar 

  4. Mueck W, Eriksson BI, Bauer KA, Borris L, Dahl OE, Fisher WD, Gent M, Haas S, Huisman MV, Kakkar AK, Kälebo P, Kwong LM, Misselwitz F, Turpie AGG (2008) Population pharmacokinetics and pharmacodynamics of rivaroxaban--an oral, direct factor Xa inhibitor--in patients undergoing major orthopaedic surgery. Clin Pharmacokinet 47:203–216. https://doi.org/10.2165/00003088-200847030-00006

    Article  CAS  PubMed  Google Scholar 

  5. Duggan ST (2012) Rivaroxaban: a review of its use for the prophylaxis of venous thromboembolism after total hip or knee replacement surgery. Am J Cardiovasc Drugs 12:57–72. https://doi.org/10.2165/11208470-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  6. Antoniou S (2015) Rivaroxaban for the treatment and prevention of thromboembolic disease. J Pharm Pharmacol 67:1119–1132. https://doi.org/10.1111/jphp.12387

    Article  CAS  PubMed  Google Scholar 

  7. Frostick S (2016) Pharmacological thromboprophylaxis and total hip or knee replacement. Br J Nurs 25:45–53. https://doi.org/10.12968/bjon.2016.25.1.45

    Article  PubMed  Google Scholar 

  8. Friedman RJ (2010) New oral anticoagulants for thromboprophylaxis after elective total hip and knee arthroplasty. Thrombosis 2010:280731. https://doi.org/10.1155/2010/280731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stampfuss J, Kubitza D, Becka M, Mueck W (2013) The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int J Clin Pharmacol Ther 51:549–561. https://doi.org/10.5414/CP201812

    Article  CAS  PubMed  Google Scholar 

  10. (2016) Janssen Pharmaceuticals Xarelto

  11. Kubitza D, Becka M, Voith B et al (2005) Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther 78:412–421. https://doi.org/10.1016/j.clpt.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  12. Mueck W, Stampfuss J, Kubitza D, Becka M (2014) Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet 53:1–16. https://doi.org/10.1007/s40262-013-0100-7

    Article  CAS  PubMed  Google Scholar 

  13. Weinz C, Schwarz T, Kubitza D, Mueck W, Lang D (2009) Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos 37:1056–1064. https://doi.org/10.1124/dmd.108.025569.shown

    Article  CAS  PubMed  Google Scholar 

  14. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S (2011) In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther 338:372–380. https://doi.org/10.1124/jpet.111.180240

    Article  CAS  PubMed  Google Scholar 

  15. Mueck W, Kubitza D, Becka M (2013) Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol 76:455–466. https://doi.org/10.1111/bcp.12075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gong IY, Mansell SE, Kim RB (2013) Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol 112:164–170. https://doi.org/10.1111/bcpt.12005

    Article  CAS  PubMed  Google Scholar 

  17. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, Altman RB (2011) Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 21:152–161. https://doi.org/10.1097/FPC.0b013e3283385a1c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodin S, Basset T, Jacqueroux E, Delezay O (2017) In vitro comparison of the role of P-glycoprotein and breast cancer resistance protein on direct oral anticoagulants disposition. Eur J Drug Metab Pharmacokinet 43:183–191. https://doi.org/10.1007/s13318-017-0434-x

    Article  CAS  Google Scholar 

  19. Lorenzini KI, Daali Y, Fontana P et al (2016) Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front Pharmacol 7:1–5. https://doi.org/10.3389/fphar.2016.00494

    Article  CAS  Google Scholar 

  20. Gouin-Thibault I, Delavenne X, Blanchard A, Siguret V, Salem JE, Narjoz C, Gaussem P, Beaune P, Funck-Brentano C, Azizi M, Mismetti P, Loriot MA (2017) Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost 15:273–283. https://doi.org/10.1111/jth.13577

    Article  CAS  PubMed  Google Scholar 

  21. Sennesael A, Panin N, Vancraeynest C et al (2018) Effect of ABCB1 genetic polymorphisms on the transport of rivaroxaban in HEK293 recombinant cell lines. Sci Rep 8:6–11. https://doi.org/10.1038/s41598-018-28622-4

    Article  CAS  Google Scholar 

  22. Sennesael A, Larock A, Douxfils J et al (2018) Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J 16:1–8. https://doi.org/10.1186/s12959-018-0183-3

    Article  CAS  Google Scholar 

  23. Mueck W, Becka M, Kubitza D, Voith B, Zuehlsdorf M (2007) Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban - an oral, direct factor Xa - inhibitor in healthy subjects. Int J Clin Pharmacol Ther 45:335–344. https://doi.org/10.5414/CPP45335

    Article  CAS  PubMed  Google Scholar 

  24. Mueck W, Borris LC, Dahl OE et al (2008) Population pharmacokinetics and pharmacodynamics of once- and twice-daily rivaroxaban for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb Haemost 100:453–461. https://doi.org/10.1160/07-12-0714

    Article  CAS  PubMed  Google Scholar 

  25. Mueck W, Lensing AWA, Agnelli G, Decousus H, Prandoni P, Misselwitz F (2011) Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet 50:675–686. https://doi.org/10.2165/11595320-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  26. Girgis IG, Patel MR, Peters GR, et al (2014) Population pharmacokinetics and pharmacodynamics of rivaroxaban in patients with non-valvular atrial fibrillation: results from ROCKET AF. https://doi.org/10.1002/jcph.288

  27. Xu XS, Moore K, Burton P, Stuyckens K, Mueck W, Rossenu S, Plotnikov A, Gibson M, Vermeulen A (2012) Population pharmacokinetics and pharmacodynamics of rivaroxaban in patients with acute coronary syndromes. Br J Clin Pharmacol 74:86–97. https://doi.org/10.1111/j.1365-2125.2012.04181.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Willmann S, Zhang L, Frede M, Kubitza D, Mueck W, Schmidt S, Solms A, Yan X, Garmann D (2018) Integrated population pharmacokinetic analysis of rivaroxaban across multiple patient populations. CPT Pharmacometrics Syst Pharmacol 7:309–320. https://doi.org/10.1002/psp4.12288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levey A, Green T, Kusek J, Beck G (2000) MDRD Study Group. A simplified equation to predict glomerular filtration rate from serum creatinine (abstract). J Am Soc Nephrol 11:155A (A0828)

  30. Douxfils J, Tamigniau A, Chatelain B, Chatelain C, Wallemacq P, Dogné JM, Mullier F (2013) Comparison of calibrated chromogenic anti-Xa assay and PT tests with LC-MS/MS for the therapeutic monitoring of patients treated with rivaroxaban. Thromb Haemost 110:723–731. https://doi.org/10.1160/TH13-04-0274

    Article  CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  32. Sudchada P, Oo-Puthinan S, Kerdpin O, Saelim N (2010) ABCB1 gene expression in peripheral blood mononuclear cells in healthy Thai males and females. Genet Mol Res 9:1177–1185. https://doi.org/10.4238/vol9-2gmr813

    Article  CAS  PubMed  Google Scholar 

  33. Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. (1989–2009). Ellicott City, MD, USA

  34. Bergstrand M, Karlsson MO (2009) Handling data below the limit of quantification in mixed effect models. AAPS J 11:371–380. https://doi.org/10.1208/s12248-009-9112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hegarty JP, Sangster W, Harris LR, Stewart DB (2014) Proton pump inhibitors induce changes in colonocyte gene expression that may affect Clostridium difficile infection. Surgery 156:972–978. https://doi.org/10.1016/j.surg.2014.06.074

    Article  PubMed  Google Scholar 

  36. Rekersbrink CPS, Klotz U, Fromm MF (2001) Interaction of omeprazole , lansoprazole and pantoprazole with P-glycoprotein. 551–557. https://doi.org/10.1007/s00210-001-0489-7

  37. Paré G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, Axelsson T, Haertter S, Oldgren J, Reilly P, Siegbahn A, Syvanen AC, Wadelius C, Wadelius M, Zimdahl-Gelling H, Yusuf S, Wallentin L (2013) Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127:1404–1412. https://doi.org/10.1161/CIRCULATIONAHA.112.001233

    Article  CAS  PubMed  Google Scholar 

  38. Kryukov AV, Sychev DA, Andreev DA, Ryzhikova KA, Grishina EA, Ryabova AV, Loskutnikov MA, Smirnov VV, Konova OD, Matsneva IA, Bochkov PO (2018) Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharmgenomics Pers Med 11:43–49. https://doi.org/10.2147/PGPM.S157111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ueshima S, Hira D, Fujii R, Kimura Y, Tomitsuka C, Yamane T, Tabuchi Y, Ozawa T, Itoh H, Horie M, Terada T, Katsura T (2017) Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet Genomics 27:329–336. https://doi.org/10.1097/FPC.0000000000000294

    Article  CAS  PubMed  Google Scholar 

  40. Eikelboom JW, Quinlan DJ, Hirsh J, et al (2017) Laboratory monitoring of non–vitamin K antagonist oral anticoagulant use in patients with atrial fibrillation: a review. 1–9 . doi: https://doi.org/10.1001/jamacardio.2017.0364

  41. Freyburger G, Macouillard G, Labrouche S, Sztark F (2011) Coagulation parameters in patients receiving dabigatran etexilate or rivaroxaban: two observational studies in patients undergoing total hip or total knee replacement. Thromb Res 127:457–465. https://doi.org/10.1016/j.thromres.2011.01.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Slovenian Research Agency (ARRS Grants P1-0189 and P3-0067).

Author information

Authors and Affiliations

Authors

Contributions

MPe, AM, MV, UP, and IG conceived and designed the study. MV recruited the patients and was the principal clinical investigator. MPe, KR, and UP performed the biochemical and genetic analyses. JZ, MPi, and IG analyzed the data. JZ and IG drafted the first manuscript. UP and AM provided scientific supervision. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Iztok Grabnar.

Ethics declarations

The study was conducted in accordance with the Helsinki declaration and was approved by the National Medical Ethics Committee of the Republic of Slovenia (168/07/11). Written informed consent was obtained from all patients prior to inclusion in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdovc, J., Petre, M., Pišlar, M. et al. Downregulation of ABCB1 gene in patients with total hip or knee arthroplasty influences pharmacokinetics of rivaroxaban: a population pharmacokinetic-pharmacodynamic study. Eur J Clin Pharmacol 75, 817–824 (2019). https://doi.org/10.1007/s00228-019-02639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-019-02639-8

Keywords

Navigation