Skip to main content
Log in

The Influence of ABCB1 (rs1045642 and rs4148738) Gene Polymorphisms on Rivaroxaban Pharmacokinetics in Patients Aged 80 Years and Older with Nonvalvular Atrial Fibrillation

  • Original article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

ABCB1 gene polymorphisms are associated with rivaroxaban distribution changes and adverse reactions but the data are controversial.

Aim

To evaluate the influence of ABCB1 (rs1045642 and rs4148738) gene polymorphisms on rivaroxaban pharmacokinetics in patients aged 80 years and older with nonvalvular atrial fibrillation (NAF).

Methods

128 patients aged 80 years and older (median [Me] age 87.5 [83.0–90.0] years) with NAF were included. We performed ABCB1 (rs1045642 and rs4148738) genotyping, measured the trough steady-state plasma concentration (Cmin,ss) of rivaroxaban and prothrombin time (PT) and analyzed prior medical records for clinically relevant non-major bleeding (CRNMB).

Results

CC genotype carriers had no differences in Cmin,ss (p > 0.05) compared with the CT and TT rs1045642 and rs4148738 genotypes carriers. CC genotype carriers had no differences in PT (p > 0.05) compared with the CT rs1045642 and rs4148738 and TT rs4148738 genotypes carriers. In the TT genotype PT levels were higher than in the CC rs1045642 genotype: Me 14.2 [13.0–16.1] sec vs 13.3 [12.4–14.5] sec (p = 0.049). Incidence of CRNMB was higher in patients with the TT genotype compared with the CC rs1045642 (29.3% vs 4.5%, p = 0.021) and rs4148738 (39.3% vs 8.1%, p = 0.008) and the CT genotype rs4148738 (39.3% vs 14.3%, p = 0.002).

Conclusion

ABCB1 (rs1045642 and rs4148738) polymorphisms didn’t influence rivaroxaban pharmacokinetics in patients aged 80 years and older with NAF. TT carriers developed CRNMB more frequently compared with the CC rs1045642 and the CC and CT rs4148738 genotypes. The haplotype TT–TT haplotype was associated with a higher frequency of CRNMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weitz JI, Eikelboom JW, Samama MM, American College of Chest Physicians. New antithrombotic drugs: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e120S – e151.

    Article  CAS  Google Scholar 

  2. Mekaj YH, Mekaj AY, Duci SB, Miftari EI. New oral anticoagulants: their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events. Ther Clin Risk Manag. 2015;11:967–77. https://doi.org/10.2147/tcrm.s84210.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lip GYH, Agnelli G. Edoxaban: a focused review of its clinical pharmacology. Eur Heart J. 2014;35:1844–55. https://doi.org/10.1093/eurheartj/ehu181.

    Article  CAS  PubMed  Google Scholar 

  4. Cherubini A, Carrieri B, Marinelli P. Advantages and disadvantages of direct oral anticoagulants in older patients. Geriatr Care. 2018;4:7227. https://doi.org/10.4081/gc.2018.7227.

    Article  Google Scholar 

  5. Bauer KA. Pros and cons of new oral anticoagulants. Ash Educ Program Book. 2013;2013:464–70. https://doi.org/10.1182/asheducation-2013.1.464.

    Article  Google Scholar 

  6. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL, ESC Scientific Document Group. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2020;42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612.

    Article  Google Scholar 

  7. Barnes GD, Lucas E, Alexander GC, Goldberger ZD. National trends in ambulatory oral anticoagulant use. Am J Med. 2015;128(12):1300-5.e2. https://doi.org/10.1016/j.amjmed.2015.05.044.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alalwan AA, Voils SA, Hartzema AG. Trends in utilization of warfarin and direct oral anticoagulants in older adult patients with atrial fibrillation. Am J Health Syst Pharm. 2017;74(16):1237–44. https://doi.org/10.2146/ajhp160756.

    Article  PubMed  Google Scholar 

  9. Ministry of Health of the Russian Federation. Clinical guidelines “Pharmacologic therapy in elderly and senile patients”. 2018. https://www.volgmed.ru/uploads/files/2019-10/118752-farmakoterapiya_u_lic_pozhilogo_i_starcheskogo_vozrasta.pdf. Accessed 25 Jan 2021.

  10. Salem JE, Sabouret P, Funck-Brentano C, Hulot JS. Pharmacology and mechanisms of action of new oral anticoagulants. Fundam Clin Pharmacol. 2015;29(1):10–20. https://doi.org/10.1111/fcp.12091.

    Article  CAS  PubMed  Google Scholar 

  11. Testa S, Tripodi A, Legnani C, Pengo V, Abbate R, Dellanoce C, Carraro P, Salomone L, Paniccia R, Paoletti O, Poli D, Palareti G, START-Laboratory Register. Plasma levels of direct oral anticoagulants in real life patients with atrial fibrillation: results observed in four anticoagulation clinics. Thromb Res. 2016;137:178–83.

    Article  CAS  Google Scholar 

  12. Samama MM, Guinet C, Le Flem L, Ninin E, Debue JM. Measurement of dabigatran and rivaroxaban in primary prevention of venous thromboembolism in 106 patients, who have undergone major orthopedic surgery: an observational study. J Thromb Thrombolysis. 2013;35(2):140–6. https://doi.org/10.1007/s11239-012-0803-x.

    Article  CAS  PubMed  Google Scholar 

  13. Gong IY, Kim RB. Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol. 2013;29(7 Suppl):S24-33. https://doi.org/10.1016/j.cjca.2013.04.002.

    Article  PubMed  Google Scholar 

  14. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16. https://doi.org/10.1007/s40262-013-0100-7.

    Article  CAS  PubMed  Google Scholar 

  15. Kubitza D, Roth A, Becka M, Alatrach A, Halabi A, Hinrichsen H, Mueck W. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban—an oral, direct factor Xa inhibitor. Br J Clin Pharmacol. 2013;76(1):88–98. https://doi.org/10.1111/bcp.12054.

    Article  CAS  Google Scholar 

  16. Kubitza D, Becka M, Mueck W, Halabi A, Maatouk H, Klause N, Lufft V, Wand DD, Philipp T, Bruck H. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct factor Xa inhibitor. Br J Clin Pharmacol. 2010;70(5):703–12. https://doi.org/10.1111/j.1365-2125.2010.03753.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin K, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemost. 2016;14:1308–13. https://doi.org/10.1111/jth.13323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie Q, Xiang Q, Mu G, Ma L, Chen S, Zhou S, Hu K, Zhang Z, Cui Y, Jiang J. Effect of ABCB1 genotypes on the pharmacokinetics and clinical outcomes of new oral anticoagulants: a systematic review and meta-analysis. Curr Pharm Des. 2018;24(30):3558–65. https://doi.org/10.2174/1381612824666181018153641.

    Article  CAS  PubMed  Google Scholar 

  19. Kanuri SH, Kreutz RP. Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants. J Pers Med. 2019;9(1):7. https://doi.org/10.3390/jpm9010007.

    Article  PubMed Central  Google Scholar 

  20. Raymond J, Imbert L, Cousin T, Duflot T, Varin R, Wils J, Lamoureux F. Pharmacogenetics of direct oral anticoagulants: a systematic review. J Pers Med. 2021;11(1):37. https://doi.org/10.3390/jpm11010037.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bayer Pharma AG. Xarelto (rivaroxaban) summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf. Accessed 20 July 2018.

  22. Tripodi A, Ageno W, Ciaccio M, et al. Position paper on laboratory testing for patients on direct oral anticoagulants. A consensus document from the SISET, FCSA, SIBioC and SIPMeL. Blood Transfus. 2018;16(5):462–70. https://doi.org/10.2450/2017.0124-17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics. 2003;4(4):397–410. https://doi.org/10.1517/phgs.4.4.397.22747.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.

    Article  CAS  Google Scholar 

  25. Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525–8. https://doi.org/10.1126/science.1135308.

    Article  CAS  PubMed  Google Scholar 

  26. Fung KL, Pan J, Ohnuma S, Lund PE, Pixley JN, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. Cancer Res. 2014;74:598–608. https://doi.org/10.1158/0008-5472.can-13-2064.

    Article  CAS  PubMed  Google Scholar 

  27. Yamauchi A, Ieiri I, Kataoka Y, Tanabe M, Nishizaki T, Oishi R, Higuchi S, Otsubo K, Sugimachi K. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation. 2002;74(4):571–2. https://doi.org/10.1097/00007890-200208270-00024.

    Article  CAS  PubMed  Google Scholar 

  28. van Erp NP, Eechoute K, van der Veldt AA, Haanen JB, Reyners AKL, Mathijssen RHJ, Boven E, van der Straaten T, Baak-Pablo RF, Wessels JAM, Guchelaar H-J, Gelderblom H. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol. 2009;27:4406–12.

    Article  Google Scholar 

  29. Breitenstein B, Scheuer S, Brückl TM, Meyer J, Ising M, Uhr M, Holsboer F. Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: results from a randomized clinical study. J Psychiatr Res. 2016;73:86–95. https://doi.org/10.1016/j.jpsychires.2015.11.010.

    Article  PubMed  Google Scholar 

  30. Zheng Q, Wu H, Yu Q, Kim DH, Lipton JH, Angelini S, Soverini S, Vivona D, Takahashi N, Cao J. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: a systematic review and meta-analysis. Pharmacogenom J. 2015;15(2):127–34. https://doi.org/10.1038/tpj.2014.54.

    Article  CAS  Google Scholar 

  31. Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet. 2015;54:709–35. https://doi.org/10.1007/s40262-015-0267-1.

    Article  CAS  PubMed  Google Scholar 

  32. Wieland E, Shipkova M. Pharmacokinetic and pharmacodynamic drug monitoring of direct acting oral anticoagulants: where do we stand? Ther Drug Monit. 2019;41(2):180–91. https://doi.org/10.1097/ftd.0000000000000594.

    Article  CAS  PubMed  Google Scholar 

  33. Kaatz S, Ahmad D, Spyropoulos AC, Schulman S. Subcommittee on control of anticoagulation. Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thromb Haemost. 2015;13:2119–26. https://doi.org/10.1111/jth.13140.

    Article  CAS  PubMed  Google Scholar 

  34. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3:692–4. https://doi.org/10.1111/j.1538-7836.2005.01204.x.

    Article  CAS  PubMed  Google Scholar 

  35. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Online Encyclopedia for Genetic Epidemiology studies. Hardy–Weinberg equilibrium calculator. 2008. http://www.oege.org/software/hwe-mr-calc.shtml. Accessed 14 June 2021.

  37. Sychev D, Minnigulov R, Bochkov P, Ryzhikova K, Yudina I, Lychagin A, Morozova T. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery. High Blood Press Cardiovasc Prev. 2019;26(5):413–20. https://doi.org/10.1007/s40292-019-00342-4.

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa J, Kinjo T, Iizuka M, Ueno K, Tomita H, Niioka T. Impact of gene polymorphisms in drug-metabolizing enzymes and transporters on trough concentrations of rivaroxaban in patients with atrial fibrillation. Basic Clin Pharmacol Toxicol. 2021;128(2):297–304. https://doi.org/10.1111/bcpt.13488.

    Article  CAS  PubMed  Google Scholar 

  39. Sennesael AL, Larock AS, Douxfils J, Elens L, Stillemans G, Wiesen M, Taubert M, Dogné JM, Spinewine A, Mullier F. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J. 2018;16:28. https://doi.org/10.1186/s12959-018-0183-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lorenzini KI, Daali Y, Fontana P, Desmeules J, Samer CE. Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front Pharmacol. 2016;7:494. https://doi.org/10.3389/fphar.2016.00494.

    Article  CAS  Google Scholar 

  41. Gouin-Thibault I, Delavenne X, Blanchard A, Siguret V, Salem JE, Narjoz C, Gaussem P, Beaune P, Funck-Brentano C, Azizi M, Mismetti P, Loriot MA. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273–83. https://doi.org/10.1111/jth.13577.

    Article  CAS  PubMed  Google Scholar 

  42. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97(7):3473–8. https://doi.org/10.1073/pnas.050585397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updates. 2017;32:23–46. https://doi.org/10.1016/j.drup.2017.10.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Cherniaeva.

Ethics declarations

Funding

This study was supported by Russian Science Foundation, project no. 22-15-0025 Personalized use of direct oral anticoagulants based on the pharmacogenomic approach. 2022 Competition for Grants in the area of “Conducting fundamental scientific research and exploratory research by individual research groups”.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

The study was approved by the Ethics Committee of the Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation (Study Protocol No. 1, 22.01.2019) and it was carried out in accordance with the latest edition of the Declaration of Helsinki and the principles of Good Clinical Practice.

Consent to participate

Oral and written informed consent was obtained from all participants included in the study.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable

Author contributions

Conceptualization: Dmitry Sychev, Olga Ostroumova, Marina Cherniaeva; Methodology: Dmitry Sychev, Olga Ostroumova, Marina Cherniaeva; Supervision: Dmitry Sychev, Olga Ostroumova; Formal Analysis: Marina Cherniaeva, Nataliia Shakhgildian; Funding Acquisition: Dmitry Sychev; Investigation: Marina Cherniaeva, Nataliia Shakhgildian, Karin Mirzaev, Sherzod Abdullaev, Natalia Denisenko, Zhannet Sozaeva, Anastasia Kachanova; Resources: Dmitry Sychev, Marina Cherniaeva, Karin Mirzaev, Sherzod Abdullaev, Natalia Denisenko, Zhannet Sozaeva, Anastasia Kachanova, Vera Shastina, Svetlana Gorbatenkova; Project Administration: Dmitry Sychev, Olga Ostroumova; Writing: Marina Cherniaeva, Nataliia Shakhgildian, Karin Mirzaev, Sherzod Abdullaev, Natalia Denisenko, Zhannet Sozaeva, Anastasia Kachanova, Vera Shastina, Svetlana Gorbatenkova; Review and Editing: Dmitry Sychev, Olga Ostroumova.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 74 KB)

Supplementary file2 (DOC 74 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sychev, D., Ostroumova, O., Cherniaeva, M. et al. The Influence of ABCB1 (rs1045642 and rs4148738) Gene Polymorphisms on Rivaroxaban Pharmacokinetics in Patients Aged 80 Years and Older with Nonvalvular Atrial Fibrillation. High Blood Press Cardiovasc Prev 29, 469–480 (2022). https://doi.org/10.1007/s40292-022-00536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-022-00536-3

Keywords

Navigation