Skip to main content

Advertisement

Log in

Pharmacokinetics and pharmacodynamics of dasatinib in the chronic phase of newly diagnosed chronic myeloid leukemia

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Dasatinib is a novel, oral, multi-targeted kinase inhibitor of breakpoint cluster region-abelson (BCR-ABL) and Src family kinases. The study investigated pharmacokinetic (PK) and pharmacodynamic (PD) analyses of dasatinib in 51 newly diagnosed, chronic phase, chronic myeloid leukemia patients.

Methods

The dasatinib concentration required to inhibit 50 % of the CrkL (CT10 regulator of kinase like) phosphorylation in bone marrow CD34+ cells (half maximal (50 %) inhibitory concentration (IC50)CD34+cells) was calculated from each patient’s dose-response curve using flow cytometry. PK parameters were obtained from the population pharmacokinetic analysis of dasatinib concentrations in plasma on day 28 after administration.

Results

Early molecular responses were not significantly associated with PK or PD (IC50CD34+cells) parameters. However, the PK/PD parameter—time above IC50CD34+cells—significantly correlated with BCR-ABL transcript level at 3 months (correlation coefficient (CC) = −0.292, P = 0.0375) and the reduction of BCR-ABL level at 1 or 3 months (CC = −0.404, P = 0.00328 and CC = −0.356, P = 0.0104, respectively). Patients with more than 12.6 h at time above IC50CD34+cells achieved a molecular response of 3.0 log reduction at 3 months and those more than 12.8 h achieved a deep molecular response less than 4.0 log reduction at 6 months at a significantly high rate (P = 0.013, odds ratio = 4.8 and P = 0.024, odds ratio = 4.3, respectively).

Conclusion

These results suggest that the anti-leukemic activity of dasatinib exhibits in a time-dependent manner and that exposure for more than 12.8 h at time above IC50CD34+cells could significantly improve prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300(5894):765–767

    Article  PubMed  Google Scholar 

  2. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36(1):93–99

    Article  PubMed  CAS  Google Scholar 

  3. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037. doi:10.1056/NEJM200104053441401

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004. doi:10.1056/NEJMoa022457

    Article  PubMed  Google Scholar 

  5. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, Moiraghi B, Shen Z, Mayer J, Pasquini R, Nakamae H, Huguet F, Boque C, Chuah C, Bleickardt E, Bradley-Garelik MB, Zhu C, Szatrowski T, Shapiro D, Baccarani M (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362(24):2260–2270. doi:10.1056/NEJMoa1002315

    Article  PubMed  CAS  Google Scholar 

  6. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, Pasquini R, Clark RE, Hochhaus A, Hughes TP, Gallagher N, Hoenekopp A, Dong M, Haque A, Larson RA, Kantarjian HM (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362(24):2251–2259. doi:10.1056/NEJMoa0912614

    Article  PubMed  CAS  Google Scholar 

  7. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 26(1):1–10 quiz 11-12

    Article  CAS  Google Scholar 

  8. Craig WA (2002) Antimicrobial pharmacodynamics in theory and clinical practice. Pharmacodynamics of antimicrobials: general concepts and applications New York: Marcel Dekker (Nightingale CH, Murakawa T, Amebrose PG (editors): 1–22

  9. Calvert AH (1994) Dose optimisation of carboplatin in adults. Anticancer Res 14(6A):2273–2278

    PubMed  CAS  Google Scholar 

  10. Jakobsen P, Bastholt L, Dalmark M, Pfeiffer P, Petersen D, Gjedde SB, Sandberg E, Rose C, Nielsen OS, Mouridsen HT (1991) A randomized study of epirubicin at four different dose levels in advanced breast cancer. Feasibility of myelotoxicity prediction through single blood-sample measurement. Cancer Chemother Pharmacol 28(6):465–469

    Article  PubMed  CAS  Google Scholar 

  11. Kearns CM, Gianni L, Egorin MJ (1995) Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol 22(3 Suppl 6):16–23

    PubMed  CAS  Google Scholar 

  12. Joel SP, Shah R, Slevin ML (1994) Etoposide dosage and pharmacodynamics. Cancer Chemother Pharmacol 34(Suppl):S69–S75

    Article  PubMed  Google Scholar 

  13. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA, Lassalle R, Marit G, Reiffers J, Begaud B, Moore N, Molimard M, Mahon FX (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109(8):3496–3499. doi:10.1182/blood-2006-07-036012

    Article  PubMed  CAS  Google Scholar 

  14. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, Gathmann I, Wang Y (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028. doi:10.1182/blood-2007-10-116475

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Roy A, Hochhaus A, Kantarjian HM, Chen TT, Shah NP (2013) Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a phase III study. Clinical Pharmacology : advances and Applications 5:85–97. doi:10.2147/CPAA.S42796

    CAS  Google Scholar 

  16. Giles FJ, Yin OQ, Sallas WM, le Coutre PD, Woodman RC, Ottmann OG, Baccarani M, Kantarjian HM (2013) Nilotinib population pharmacokinetics and exposure-response analysis in patients with imatinib-resistant or -intolerant chronic myeloid leukemia. Eur J Clin Pharmacol 69(4):813–823. doi:10.1007/s00228-012-1385-4

    Article  PubMed  Google Scholar 

  17. Mizutani T, Kondo T, Darmanin S, Tsuda M, Tanaka S, Tobiume M, Asaka M, Ohba Y (2010) A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells. Clinical Cancer research: an Official Journal of the American Association for Cancer Research 16(15):3964–3975. doi:10.1158/1078-0432.CCR-10-0548

    Article  CAS  Google Scholar 

  18. De Francia S, D’Avolio A, De Martino F, Pirro E, Baietto L, Siccardi M, Simiele M, Racca S, Saglio G, Di Carlo F, Di Perri G (2009) New HPLC-MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib, and nilotinib in human plasma. J Chromatogr B Anal Technol Biomed Life Sci 877(18–19):1721–1726. doi:10.1016/j.jchromb.2009.04.028

    Article  Google Scholar 

  19. Yoshitsugu HIY, Seriu T, Hiraoka M (2012) Markov chain Monte Carlo Bayesian analysis for population pharmacokinetics of dasatinib in Japanese adult subjects with chronic myeloid leukemia and Philadelphia chromosome positive acute lymphoblastic leukemia. Jpn J Clin Pharmacol Ther 43:29–41

    Article  CAS  Google Scholar 

  20. Hamilton A, Elrick L, Myssina S, Copland M, Jorgensen H, Melo JV, Holyoake T (2006) BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 20(6):1035–1039. doi:10.1038/sj.leu.2404189

    Article  PubMed  CAS  Google Scholar 

  21. Sokal JE, Baccarani M, Russo D, Tura S (1988) Staging and prognosis in chronic myelogenous leukemia. Semin Hematol 25(1):49–61

    PubMed  CAS  Google Scholar 

  22. White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB, Hughes T (2005) In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 106(7):2520–2526. doi:10.1182/blood-2005-03-1103

    Article  PubMed  CAS  Google Scholar 

  23. Lucas CM, Harris RJ, Giannoudis A, Knight K, Watmough SJ, Clark RE (2010) BCR-ABL1 tyrosine kinase activity at diagnosis, as determined via the pCrkL/CrkL ratio, is predictive of clinical outcome in chronic myeloid leukaemia. Br J Haematol 149(3):458–460. doi:10.1111/j.1365-2141.2009.08066.x

    Article  PubMed  CAS  Google Scholar 

  24. Khorashad JS, Wagner S, Greener L, Marin D, Reid A, Milojkovic D, Patel H, Willimott S, Rezvani K, Gerrard G, Loaiza S, Davis J, Goldman J, Melo J, Apperley J, Foroni L (2009) The level of BCR-ABL1 kinase activity before treatment does not identify chronic myeloid leukemia patients who fail to achieve a complete cytogenetic response on imatinib. Haematologica 94(6):861–864. doi:10.3324/haematol.2008.003715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Hanfstein B, Shlyakhto V, Lauseker M, Hehlmann R, Saussele S, Dietz C, Erben P, Fabarius A, Proetel U, Schnittger S, Krause SW, Schubert J, Einsele H, Hanel M, Dengler J, Falge C, Kanz L, Neubauer A, Kneba M, Stegelmann F, Pfreundschuh M, Waller CF, Spiekermann K, Baerlocher GM, Pfirrmann M, Hasford J, Hofmann WK, Hochhaus A, Muller MC (2014) Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia 28(10):1988–1992. doi:10.1038/leu.2014.153

    Article  PubMed  CAS  Google Scholar 

  26. Kim DH, Kamel-Reid S, Chang H, Sutherland R, Jung CW, Kim HJ, Lee JJ, Lipton JH (2009) Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica 94(1):135–139. doi:10.3324/haematol.13151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F, Hjorth-Hansen H, Hoglund M, Kovanen P, Laurinolli T, Liesveld J, Paquette R, Pinilla-Ibarz J, Rauhala A, Shah N, Simonsson B, Sinisalo M, Steegmann JL, Stenke L, Porkka K (2009) Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 23(8):1398–1405. doi:10.1038/leu.2009.46

    Article  PubMed  CAS  Google Scholar 

  28. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K, Flefleh C, Castaneda S, Inigo I, Kan D, Wen ML, Kramer R, Blackwood-Chirchir A, Lee FY (2006) Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 12(23):7180–7186. doi:10.1158/1078-0432.CCR-06-1112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. H. Chiba and Miss S. Hirayama for their technical assistance. We thank the hematologists Drs. K. Kinoshita, M. Ohta, Y. Okano, Y. Izumiyama, K. Takano, H. Ohgawara, J. Shimono, Izumiguchi, S. Kamihara, S. Kowata, N. Fujimoto, S. Takahashi, J. Yamammoto, T. Chou, K. Wakasa, and H. Karube involved in the IMIDAS clinical study and their clinical staff who kindly provided blood samples, making this analysis possible. We also thank ECRIN, Japan for monitoring the clinical trial.

This work was supported by JSPS KAKENHI Grant Number 25461458.

Authors’ contributions

Y. Ishida designed and performed the experiments, analyzed the data, and wrote the manuscript. K. Murai, K. Yamaguchi, T. Miyagishima, M. Shindo, K. Ogawa, T. Nagashima, S. Sato, R. Watanabe, S. Yamamoto, T. Hirose, S. Saitou, M. Yonezumi, T. Kondo, Y. Kato, K. Kubo, T. Oyake, and S. Ito conducted the clinical trial, provided patient care, and commented on the manuscript. N. Mochizuki, K. Ohno, and S. Kishino measured and analyzed dasatinib pharmacokinetics.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yoji Ishida.

Ethics declarations

Conflict of interest disclosures

Y. Ishida received honorarium and speaker fee from Bristol-Myers.

The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, Y., Murai, K., Yamaguchi, K. et al. Pharmacokinetics and pharmacodynamics of dasatinib in the chronic phase of newly diagnosed chronic myeloid leukemia. Eur J Clin Pharmacol 72, 185–193 (2016). https://doi.org/10.1007/s00228-015-1968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1968-y

Keywords

Navigation