Skip to main content

Advertisement

Log in

Successful strategy to improve the specificity of electronic statin–drug interaction alerts

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

A considerable weakness of current clinical decision support systems managing drug–drug interactions (DDI) is the high incidence of inappropriate alerts. Because DDI-induced, dose-dependent adverse events can be prevented by dosage adjustment, corresponding DDI alerts should only be issued if dosages exceed safe limits. We have designed a logical framework for a DDI alert-system that considers prescribed dosage and retrospectively evaluates the impact on the frequency of statin–drug interaction alerts.

Methods

Upper statin dose limits were extracted from the drug label (SPC) (20 statin-drug combinations) or clinical trials specifying the extent of the pharmacokinetic interaction (43 statin–drug combinations). We retrospectively assessed electronic DDI alerts and compared the number of standard alerts to alerts that took dosage into account.

Results

From among 2457 electronic prescriptions, we identified 73 high-risk statin–drug pairs. Of these, SPC dosage information classified 19 warnings as inappropriate. Data from pharmacokinetic trials took quantitative dosage information more often into consideration and classified 40 warnings as inappropriate. This is a significant reduction in the number of alerts by 55% compared to SPC-based information (26%; p < 0.001).

Conclusion

This retrospective study of pharmacokinetic statin interactions demonstrates that more than half of the DDI alerts that presented in a clinical decision support system were inappropriate if DDI-specific upper dose limits are not considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kuperman GJ, Bobb A, Payne T, Avery AJ, Gandhi TK, Burns G et al (2007) Medication-related clinical decision support in computerized provider order entry systems: a review. J Am Med Inform Assoc 14:29–40

    Article  PubMed  Google Scholar 

  2. van der Sijs H, Aarts J, Vulto A, Berg M (2006) Overriding of drug safety alerts in computerized physician order entry. J Am Med Inform Assoc 13:138–147

    Article  PubMed  Google Scholar 

  3. Paterno MD, Maviglia SM, Gorman PN, Seger DL, Yoshida E, Seger AC et al (2009) Tiering drug-drug interaction alerts by severity increases compliance rates. J Am Med Inform Assoc 16:40–46

    Article  PubMed  Google Scholar 

  4. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  CAS  PubMed  Google Scholar 

  5. Ucar M, Mjörndal T, Dahlqvist R (2000) HMG-CoA reductase inhibitors and myotoxicity. Drug Saf 22:441–457

    Article  CAS  PubMed  Google Scholar 

  6. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ et al (1996) Phase 1 study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 2:483–491

    CAS  PubMed  Google Scholar 

  7. Schmassmann-Suhijar D, Bullingham R, Gasser R, Schmutz J, Haefeli WE (1998) Rhabdomyolysis due to interaction of simvastatin with mibefradil. Lancet 351:1929–1930

    Article  CAS  PubMed  Google Scholar 

  8. Imamura R, Ichimaru N, Moriyama T, Shi Y, Namba Y, Nonomura N et al (2005) Long term efficacy of simvastatin in renal transplant recipients treated with cyclosporine or tacrolimus. Clin Transplant 19:616–621

    Article  PubMed  Google Scholar 

  9. Kobashigawa JA, Murphy FL, Stevenson LW, Moriguchi JD, Kawata N, Kamjoo P et al (1990) Low-dose lovastatin safely lowers cholesterol after cardiac transplantation. Circulation 82[Suppl 4]:281–283

    Google Scholar 

  10. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ et al (2005) Differential interaction of 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Disp 33:537–546

    Article  CAS  Google Scholar 

  11. Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP et al (1999) A novel human hepatic organic anion transporting polypeptide (OATP2): identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 274:37161–37168

    Article  CAS  PubMed  Google Scholar 

  12. Asberg A (2003) Interactions between cyclosporin and lipid-lowering drugs. Implications for organ transplant recipients. Drugs 63:367–378

    CAS  Google Scholar 

  13. Omar MA, Wilson JP (2002) FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother 36:288–295

    Article  CAS  PubMed  Google Scholar 

  14. Baxter K (ed) (2007) Stockley’s drug interactions, 8th edn. Pharmaceutical Press, Chicago London

    Google Scholar 

  15. Lendac Data Systems: DRUGDEX® System (database on CD-ROM). Thomson Healthcare, Greenwood Village

  16. Tobert JA (1988) Efficacy and long-term adverse effect pattern of lovastatin. Am J Cardiol 62:28J–34J

    Article  CAS  PubMed  Google Scholar 

  17. Holdaas H, Felström B, Jardine AG, Holme I, Nyberg G, Fauchald P et al, on behalf of the assessment of LEscol in renal transplantation (ALERT) study investigators (2003) Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet 361:2024–2031

    Article  Google Scholar 

  18. Launay-Vachar V, Izzedine H, Deray G (2005) Statins’ dosage in patients with renal failure and cyclosporine drug-drug interaction in transplant patients. Int J Clin Cardiol 101:9–17

    Article  Google Scholar 

  19. Kirchheiner J, Kudlicz D, Meisel C, Bauer S, Meineke I, Roots I et al (2003) Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S, 5R-fluvastatin and (+)-3R, 5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 74:186–194

    Article  CAS  PubMed  Google Scholar 

  20. Höppener RJ, Kuyer A, Meijer JW, Hulsman J (1980) Correlation between daily fluctuations of carbamazepine serum levels and intermittent side effects. Epilepsia 21:341–350

    Article  PubMed  Google Scholar 

  21. Haefeli WE (2007) Drug-drug interactions with levodopa modulating treatment responses in Parkinson’s disease. J Neurol 254[Suppl 4]:IV/29–IV/36

    CAS  Google Scholar 

  22. Asberg A, Hartmann A, Fjeldså E, Bergan S, Holdaas H (2001) Bilateral pharmacokinetic interaction between cyclosporine A and atorvastatin in renal transplant recipients. Am J Transplant 1:382–386

    Article  CAS  PubMed  Google Scholar 

  23. Hermann M, Asberg A, Christensen H, Holdaas H, Hartmann A, Reubsaet JL (2004) Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin Pharmacol Ther 75:101–109

    Article  Google Scholar 

  24. Lemahieu WP, Hermann M, Asberg A, Verbeke K, Holdaas H, Vanrenterghem Y et al (2005) Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. Am J Transplant 5:2236–2243

    Article  CAS  PubMed  Google Scholar 

  25. Amsden GW, Kuye O, Wei GC (2002) A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers. J Clin Pharmacol 42:444–449

    Article  CAS  PubMed  Google Scholar 

  26. Jacobson TA (2004) Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 94:1140–1146

    Article  CAS  PubMed  Google Scholar 

  27. Gerber JG, Rosenkranz SL, Fichtenbaum CJ, Vega JM, Yang A, Alston BL, AIDS Clinical Trials Group A5108 Team et al (2005) Effect of Efavirenz on the Pharmacokinetics of Simvastatin, Atorvastatin, and Pravastatin. Results of AIDS Clinical Trials Group 5108 Study. J Acquir Immune Defic Syndr 39:307–312

    Article  CAS  PubMed  Google Scholar 

  28. Siedlik PH, Olson SC, Yang BB, Stern RH (1999) Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 39:501–504

    CAS  PubMed  Google Scholar 

  29. Backman JT, Luurila H, Neuvonen M, Neuvonen PJ (2005) Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin Pharmacol Ther 78:154–167

    Article  CAS  PubMed  Google Scholar 

  30. Kantola T, Kivistö KT, Neuvonen PJ (1998) Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 64:58–65

    Article  CAS  PubMed  Google Scholar 

  31. Mazzu AL, Lasseter KC, Shamblen EC, Agarwal V, Lettieri J, Sundaresen P (2000) Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 68:391–400

    Article  CAS  PubMed  Google Scholar 

  32. Hsyu PH, Schultz-Smith MD, Lillibridge JH, Lewis RH, Kerr BM (2001) Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 45:3445–3450

    Article  CAS  PubMed  Google Scholar 

  33. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, Segal Y, Aberg JA, Blaschke T et al, NIAID AIDS Clinical Trials Group (2002) Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 16:569–577

    Article  Google Scholar 

  34. Park JW, Siekmeier R, Lattke P, Merz M, Mix C, Schüler S et al (2001) Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A. J Cardiovasc Pharmacol Ther 6:351–361

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg R, Roth D (1996) Evaluation of fluvastatin in the treatment of hypercholesterolemia in renal transplant recipients taking cyclosporine. Transplantation 62:1559–1564

    Article  CAS  PubMed  Google Scholar 

  36. Kantola T, Backman JT, Niemi M, Kivistö KT, Neuvonen PJ (2000) Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol 56:225–229

    Article  CAS  PubMed  Google Scholar 

  37. Kivistö KT, Kantola T, Neuvonen PJ (1998) Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 46:49–53

    Article  PubMed  Google Scholar 

  38. Gullestad L, Nordal KP, Berg KJ, Cheng H, Schwartz MS, Simonsen S (1999) Interaction between lovastatin and cyclosporine A after heart and kidney transplantation. Transplant Proc 31:2163–2165

    Article  CAS  PubMed  Google Scholar 

  39. Olbricht C, Wanner C, Eisenhauer T, Kliem V, Doll R, Boddaert M et al (1997) Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther 62:311–321

    Article  CAS  PubMed  Google Scholar 

  40. Bramer SL, Brisson J, Corey AE, Mallikaarjun S (1999) Effect of multiple cilostazol doses on single dose lovastatin pharmacokinetics in healthy volunteers. Clin Pharmacokinet 37[Suppl 2]:69–77

    Google Scholar 

  41. Azie NE, Brater DC, Becker PA, Jones DR, Hall SD (1998) The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 64:369–377

    Article  CAS  PubMed  Google Scholar 

  42. Kyrklund C, Backman JT, Kivistö KT, Neuvonen M, Laitila J, Neuvonen PJ (2001) Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Clin Pharmacol Ther 69:340–345

    Article  CAS  PubMed  Google Scholar 

  43. Neuvonen PJ, Jalava KM (1996) Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 60:54–61

    Article  CAS  PubMed  Google Scholar 

  44. Ring BJ, Patterson BE, Mitchell MI, Vandenbranden M, Gillespie J, Bedding AW et al (2005) Effect of tadalafil on cytochrome P450 3A4-mediated clearance: studies in vitro and in vivo. Clin Pharmacol Ther 77:63–75

    Article  CAS  PubMed  Google Scholar 

  45. Becquemont L, Neuvonen M, Verstuyft C, Jaillon P, Letierce A, Neuvonen PJ, Funck-Brentano C (2007) Amiodarone interacts with simvastatin but not with pravastatin disposition kinetics. Clin Pharmacol Ther 81:679–684

    Article  CAS  PubMed  Google Scholar 

  46. Park JW, Siekmeier R, Merz M, Krell B, Harder S, März W et al (2002) Pharmacokinetics of pravastatin in heart-transplant patients taking cyclosporin A. Int J Clin Pharmacol Ther 40:439–450

    CAS  PubMed  Google Scholar 

  47. Regazzi MB, Iacona I, Campana C, Raddato V, Lesi C, Perani G et al (1993) Altered disposition of pravastatin following concomitant drug therapy with cyclosporin A in transplant recipients. Transplant Proc 25:2732–2734

    CAS  PubMed  Google Scholar 

  48. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ (2003) Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther 73:538–544

    Article  CAS  PubMed  Google Scholar 

  49. Neuvonen PJ, Kantola T, Kivistö KT (1998) Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 63:332–341

    Article  CAS  PubMed  Google Scholar 

  50. Aberg JA, Rosenkranz SL, Fichtenbaum CJ, Alston BL, Brobst SW, Segal Y, ACTG A5108 team et al (2006) Pharmacokinetic interaction between nelfinavir and pravastatin in HIV-seronegative volunteers: ACTG Study A5108. AIDS 20:725–729

    Article  CAS  PubMed  Google Scholar 

  51. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ (2003) Effect of rifampicin on pravastatin pharmacokinetics in healthy subjects. Br J Clin Pharmacol 57:181–187

    Article  Google Scholar 

  52. Busti AJ, Bain AM, Hall RG 2nd, Bedimo RG, Leff RD, Meek C et al (2008) Effects of atazanavir/ritonavir or fosamprenovir/ritonavir on the pharmacokinetics of rosuvastatin. J Cardiovasc Pharmacol 51:605–610

    Article  CAS  PubMed  Google Scholar 

  53. Simonson SG, Raza A, Martin PD, Mitchell PD, Jarcho JA, Brown CD et al (2004) Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther 76:176–177

    Article  Google Scholar 

  54. Cooper KJ, Mertin PD, Dane AL, Warwick MJ, Raza A, Schneck DW (2003) The effect of erythromycin on the pharmacokinetics of rosuvastatin. Eur J Clin Pharmacol 59:51–56

    CAS  PubMed  Google Scholar 

  55. Schneck DW, Birmingham BK, Zalikowski JA, Mitchell PD, Wang Y, Martin PD et al (2004) The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther 75:455–463

    Article  CAS  PubMed  Google Scholar 

  56. Cooper KJ, Martin PD, Dane AL, Warwick MJ, Schneck DW, Cantarini MV (2003) Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther 73:322–329

    Article  CAS  PubMed  Google Scholar 

  57. Kiser JJ, Gerber JG, Predhomme JA, Wolfe P, Flynn DM, Hoody DW (2008) Drug/drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J Acquir Immune Defic Syndr 47:570–578

    Article  CAS  PubMed  Google Scholar 

  58. Nishio S, Watanabe H, Kosuge K, Uchida S, Hayashi H, Ohashi K (2005) Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens Res 28:223–237

    Article  CAS  PubMed  Google Scholar 

  59. Dingemanse J, Schaarschmidt D, van Giersbergen PLM (2003) Investigation of the mutual pharmacokinetic interactions between bosentan, a dual endothelin receptor antagonist, and simvastatin. Clin Pharmacokinet 42:293–301

    Article  CAS  PubMed  Google Scholar 

  60. Ichimaru N, Takahara S, Kokado Y, Wang JD, Hatori M, Kameoka H et al (2001) Changes in lipid metabolism and effect of simvastatin in renal transplant recipients induced by cyclosporine or tacrolimus. Atherosclerosis 158:417–423

    Article  CAS  PubMed  Google Scholar 

  61. Arnadottir M, Eriksson LO, Thysell H, Karkas JD (1993) Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron 65:410–413

    Article  CAS  PubMed  Google Scholar 

  62. Watanabe H, Kosuge K, Nishio S, Yamada H, Uchida S, Satoh H et al (2004) Pharmacokinetic and pharmacodynamic interactions between simvastatin and diltiazem in patients with hypercholesterolemia and hypertension. Life Sci 76:281–292

    Article  CAS  PubMed  Google Scholar 

  63. Mousa O, Brater DC, Sunblad KJ, Hall SD (2000) The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 67:267–274

    Article  CAS  PubMed  Google Scholar 

  64. Kantola T, Kivistö KT, Neuvonen PJ (1998) Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 64:177–182

    Article  CAS  PubMed  Google Scholar 

  65. Backman JT, Kyrklund C, Kivistö KT, Wang JS, Neuvonen PJ (2000) Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther 68:122–129

    Article  CAS  PubMed  Google Scholar 

  66. O’Brien SG, Meinhardt P, Bond E, Beck J, Peng B, Dutreix C et al (2003) Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89:1855–1859

    Article  PubMed  Google Scholar 

  67. Kyrklund C, Backman JT, Kivistö KT, Neuvonen M, Laitila J, Neuvonen PJ (2000) Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 68:592–597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the chamber of pharmacists, Baden-Wuerttemberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Emil Haefeli.

Additional information

Hanna Marita Seidling and Caroline Henrike Storch contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidling, H.M., Storch, C.H., Bertsche, T. et al. Successful strategy to improve the specificity of electronic statin–drug interaction alerts. Eur J Clin Pharmacol 65, 1149–1157 (2009). https://doi.org/10.1007/s00228-009-0704-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0704-x

Keywords

Navigation