Skip to main content
Log in

Montelukast and zafirlukast do not affect the pharmacokinetics of the CYP2C8 substrate pioglitazone

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Pioglitazone, a thiazolidinedione antidiabetic drug, is metabolised mainly by the cytochrome P450 (CYP) 2C8 enzyme. The leukotriene receptor antagonists montelukast and zafirlukast have potently inhibited CYP2C8 activity and the metabolism of pioglitazone in vitro. Our objective was to determine whether montelukast and zafirlukast increase the plasma concentrations of pioglitazone in humans.

Methods

In a randomised, double-blind crossover study with three phases and a washout period of 3 weeks, 12 healthy volunteers took either 10 mg montelukast once daily and placebo once daily, or 20 mg zafirlukast twice daily, or placebo twice daily, for 6 days. On day 3, they received a single oral dose of 15 mg pioglitazone. The plasma concentrations of pioglitazone and its metabolites M-IV, M-III, M-V and M-XI were measured for 96 h.

Results

The total area under the plasma concentration-time curve of pioglitazone during the montelukast and zafirlukast phases was 101% (range 71–143%) and 103% (range 78–146%), respectively, of that during the placebo phase. Also, the peak plasma concentration and elimination half-life of pioglitazone remained unaffected by montelukast and zafirlukast. There were no statistically significant differences in the pharmacokinetics of any of the metabolites of pioglitazone between the phases.

Conclusions

Montelukast and zafirlukast do not increase the plasma concentrations of pioglitazone, indicating that their inhibitory effect on CYP2C8 is negligible in vivo, despite their strong inhibitory effect on CYP2C8 in vitro. The results highlight the importance of in vivo interaction studies and of the incorporation of relevant pharmacokinetic properties of drugs, including plasma protein binding data, to in vitro-in vivo interaction predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yki-Järvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    Article  PubMed  Google Scholar 

  2. Eckland DA, Danhof M (2000) Clinical pharmacokinetics of pioglitazone. Exp Clin Endocrinol Diabetes 108(Suppl 2):234–242

    Article  Google Scholar 

  3. Shen Z, Reed JR, Creighton M, Liu DQ, Tang YS, Hora DF, Feeney W, Szewczyk J, Bakhtiar R, Franklin RB, Vincent SH (2003) Identification of novel metabolites of pioglitazone in rat and dog. Xenobiotica 33:499–509

    Article  PubMed  CAS  Google Scholar 

  4. Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ (2006) Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol 61:70–78

    Article  PubMed  CAS  Google Scholar 

  5. Actos product information. Available from: URL: http://www.actos.com/pi.pdf. Accessed Dec 20, 2004

  6. Jaakkola T, Laitila J, Neuvonen PJ, Backman JT (2006) Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro; potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol (in press)

  7. Shitara Y, Hirano M, Sato H, Sugiyama Y (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311:228–236

    Article  PubMed  CAS  Google Scholar 

  8. Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ (2002) Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 72:685–691

    Article  PubMed  CAS  Google Scholar 

  9. Wang J-S, Neuvonen M, Wen X, Backman JT, Neuvonen PJ (2002) Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 30:1352–1356

    Article  PubMed  Google Scholar 

  10. Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, Toren P, Parkinson A (2006) Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos 34:191–197

    Article  PubMed  CAS  Google Scholar 

  11. Back DJ, Tjia JF (1991) Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes. Br J Clin Pharmacol 32:624–626

    PubMed  CAS  Google Scholar 

  12. Olkkola KT, Backman JT, Neuvonen PJ (1994) Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55:481–485

    Article  PubMed  CAS  Google Scholar 

  13. Wang J-S, Wen X, Backman JT, Taavitsainen P, Neuvonen PJ, Kivistö KT (1999) Midazolam alpha-hydroxylation by human liver microsomes in vitro: inhibition by calcium channel blockers, itraconazole and ketoconazole. Pharmacol Toxicol 85:157–161

    Article  PubMed  CAS  Google Scholar 

  14. Isoherranen N, Kunze KL, Allen KE, Nelson WL, Thummel KE (2004) Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 32:1121–1131

    Article  PubMed  CAS  Google Scholar 

  15. Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ (2005) Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther 77:404–414

    Article  PubMed  CAS  Google Scholar 

  16. Walsky RL, Gaman EA, Obach RS (2005) Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 45:68–78

    Article  PubMed  CAS  Google Scholar 

  17. Walsky RL, Obach RS, Gaman EA, Gleeson JP, Proctor WR (2005) Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos 33:413–418

    Article  PubMed  CAS  Google Scholar 

  18. Lin ZJ, Ji W, Desai-Krieger D, Shum L (2003) Simultaneous determination of pioglitazone and its two active metabolites in human plasma by LC-MS/MS. J Pharm Biomed Anal 33:101–108

    Article  PubMed  CAS  Google Scholar 

  19. Radhakrishna T, Narasaraju A, Ramakrishna M, Satyanarayana A (2003) Simultaneous determination of montelukast and loratadine by HPLC and derivative spectrophotometric methods. J Pharm Biomed Anal 31:359–368

    Article  PubMed  CAS  Google Scholar 

  20. Bui KH, Kennedy CM, Azumaya CT, Birmingham BK (1997) Determination of zafirlukast, a selective leukotriene antagonist, human plasma by normal-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl 696:131–136

    Article  PubMed  CAS  Google Scholar 

  21. Singulair prescribing information. Available from: URL: www.singulair.com/montelukast_sodium/singulair/consumer/adult_asthma/product_information/pi/index.jsp. Accessed Feb 12, 2006

  22. Kajosaari LI, Niemi M, Backman JT, Neuvonen PJ (2006) Telithromycin but not montelukast increases the plasma concentrations and effects of the CYP3A4 and CYP2C8 substrate repaglinide. Clin Pharmacol Ther 79:231–242

    Article  PubMed  CAS  Google Scholar 

  23. Bidstrup TB, Bjørnsdottir I, Sidelmann UG, Thomsen MS, Hansen KT (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56:305–314

    Article  PubMed  CAS  Google Scholar 

  24. Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT (2005) Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol 97:249–256

    Article  PubMed  CAS  Google Scholar 

  25. Dekhuijzen PN, Koopmans PP (2002) Pharmacokinetic profile of zafirlukast. Clin Pharmacokinet 41:105–114

    Article  PubMed  Google Scholar 

  26. Markham A, Faulds D (1998) Montelukast. Drugs 56:251–256

    Article  PubMed  CAS  Google Scholar 

  27. Accolate prescribing information. Available from: URL: www.astrazeneca-us.com/pi/accolate.pdf. Accessed Feb 12, 2006

  28. Pelkonen O, Turpeinen M, Uusitalo J, Rautio A, Raunio H (2005) Prediction of drug metabolism and interactions on the basis of in vitro investigations. Basic Clin Pharmacol Toxicol 96:167–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr Jouko Laitila, Mrs Kerttu Mårtensson, Mrs Eija Mäkinen-Pulli and Mrs Lisbet Partanen for skilful technical assistance. This study was supported by grants from the National Technology Agency (Tekes), the Helsinki University Central Hospital Research Fund and the Sigrid Jusélius Foundation, Finland. The authors have identified no conflicts of interest in relation to this manuscript. The experiments comply with the current laws of Finland, and the study protocol was approved by the Ethics Committee for Studies in Healthy Subjects and Primary Care of the Hospital District of Helsinki and Uusimaa and the Finnish National Agency for Medicines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pertti J. Neuvonen.

Additional information

Supported by grants from the National Technology Agency (Tekes), the Helsinki University Central Hospital Research Fund and the Sigrid Jusélius Foundation, Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaakkola, T., Backman, J.T., Neuvonen, M. et al. Montelukast and zafirlukast do not affect the pharmacokinetics of the CYP2C8 substrate pioglitazone. Eur J Clin Pharmacol 62, 503–509 (2006). https://doi.org/10.1007/s00228-006-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-006-0136-9

Keywords

Navigation