Skip to main content

Advertisement

Log in

Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study

  • Highlight Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Increased loadings of nitrogen (N) from fertilizers, top soil, sewage, and atmospheric deposition are important drivers of eutrophication in coastal waters globally. Monitoring seawater and macroalgae can reveal long-term changes in N and phosphorus (P) availability and N:P stoichiometry that are critical to understanding the global crisis of coral reef decline. Analysis of a unique 3-decade data set for Looe Key reef, located offshore the lower Florida Keys, showed increased dissolved inorganic nitrogen (DIN), chlorophyll a, DIN:soluble reactive phosphorus (SRP) ratios, as well as higher tissue C:P and N:P ratios in macroalgae during the early 1990s. These data, combined with remote sensing and nutrient monitoring between the Everglades and Looe Key, indicated that the significant DIN enrichment between 1991 and 1995 at Looe Key coincided with increased Everglades runoff, which drains agricultural and urban areas extending north to Orlando, Florida. This resulted in increased P limitation of reef primary producers that can cause metabolic stress in stony corals. Outbreaks of stony coral disease, bleaching, and mortality between 1995 and 2000 followed DIN enrichment, algal blooms, and increased DIN:SRP ratios, suggesting that eutrophication interacted with other factors causing coral reef decline at Looe Key. Although water temperatures at Looe Key exceeded the 30.5 °C bleaching threshold repeatedly over the 3-decade study, the three mass bleaching events occurred only when DIN:SRP ratios increased following heavy rainfall and increased Everglades runoff. These results suggest that Everglades discharges, in conjunction with local nutrient sources, contributed to DIN enrichment, eutrophication, and increased N:P ratios at Looe Key, exacerbating P limitation, coral stress and decline. Improved management of water quality at the local and regional levels could moderate N inputs and maintain more balanced N:P stoichiometry, thereby reducing the risk of coral bleaching, disease, and mortality under the current level of temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(from Klein and Orlando 1994)

Fig. 2

Photo by Brian Lapointe

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

photo credits a, dg Brian Lapointe, b, c Craig Quirolo and h, i James Porter

Similar content being viewed by others

References

  • Agassiz L (1852) Florida reefs and coast. In: Annual report to the superintendent of the coast survey for 1851, pp 107–134

  • Anderson J, United States Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of National Marine Sanctuaries, Florida Keys National Marine Sanctuary (2011) Continuous bottom temperature measurements in strategic areas of the Florida Reef Tract at Looe Buoy, 1988–2004 (NODC Accession 0002616). Version 1.1. National Oceanographic Data Center. https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0014271. Accessed 13 July 2017

  • Anthony K, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17(5):1798–1808. https://doi.org/10.1111/j.1365-2486.2010.02364.x

    Article  Google Scholar 

  • Aspila KI, Agemian H, Chau AS (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101(1200):187–197. https://doi.org/10.1039/AN9760100187

    Article  CAS  PubMed  Google Scholar 

  • Atkinson MJ (1987) Rates of phosphate uptake by coral reef flat communities. Limnol Oceanogr 32(2):426–435. https://doi.org/10.4319/lo.1987.32.2.0426

    Article  CAS  Google Scholar 

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28(3):568–574. https://doi.org/10.4319/lo.1983.28.3.0568

    Article  CAS  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80(4):435–471. https://doi.org/10.1016/j.ecss.2008.09.003

    Article  Google Scholar 

  • Banner AH (1974) Kaneohe Bay, Hawaii; Urban pollution and a coral reefs ecosystem. In: Proceedings of the second international coral reef symposium, pp 685–702

  • Barnes BB, Hu C, Holekamp KL, Blonski S, Spiering BA, Palandro D, Lapointe B (2014) Use of Landsat data to track historical water quality changes in Florida Keys marine environments. Remote Sens Environ 140:485–496. https://doi.org/10.1016/j.rse.2013.09.020

    Article  Google Scholar 

  • Barnes BB, Garcia R, Hu C, Lee Z (2018) Multi-band spectral matching inversion algorithm to derive water column properties in optically shallow waters: an optimization of parameterization. Remote Sens Environ 204:424–438. https://doi.org/10.1016/j.rse.2017.10.013

    Article  Google Scholar 

  • Bell PR (1992) Eutrophication and coral reefs—some examples in the Great Barrier Reef Lagoon. Water Res 26(5):553–568. https://doi.org/10.1016/0043-1354(92)90228-V

    Article  CAS  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833. https://doi.org/10.1016/0043-1354(92)90228-V

    Article  CAS  PubMed  Google Scholar 

  • Birkeland C (1977) The importance of rate of biomass accumulation in early succession stages of benthic communities to the survival of coral recruits. In: Proceedings of the third international coral reef symposium, pp 16–21

  • Birkeland C (1997) Life and death of coral reefs. Springer Science and Business Media, New York

    Book  Google Scholar 

  • Birkeland C (2004) Ratcheting down the coral reefs. Bioscience 54(11):1021–1027. https://doi.org/10.1641/0006-3568(2004)054%5b1021:RDTCR%5d2.0.CO;2

    Article  Google Scholar 

  • Bohnsack JA, Harper DE, McClellan DB, Sutherland DL, White MW (1987) Resource survey of fishes within Looe Key National Marine Sanctuary. NOAA Tech Memo. NOS MEMD 5:1–108

    Google Scholar 

  • Boyer JN, Jones RD (2002) A view from the bridge: External and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 609–628

    Google Scholar 

  • Boyer JN, Fourqurean JW, Jones RJ (1999) Seasonal and long-term trends in the water quality of Florida Bay. Estuaries 22(2):417–430

    Article  CAS  Google Scholar 

  • Boyer JN, Kelble CR, Ortner PB, Rudnick DT (2009) Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol Indic 9(6):S56–S67

    Article  CAS  Google Scholar 

  • Brand LE (2002) The transport of terrestrial nutrients to South Florida coastal waters. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 353–406

    Google Scholar 

  • Briceno HO, Boyer JN (2018) 2017 Annual Report of the Water Quality Monitoring Project for the Water Quality Protection Program of the Florida Keys National Marine Sanctuary. Technical Report of the Southeast Environmental Research Center, Florida International University

  • Brodie J, De’ath G, Devlin M, Furnas M, Wright M (2007) Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar Freshw Res 58(4):342–353. https://doi.org/10.1071/MF06236

    Article  CAS  Google Scholar 

  • Bruno JF, Petes LE, Drew Harvell C, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6(12):1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x

    Article  Google Scholar 

  • Brzezinski MA (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21(3):347–357. https://doi.org/10.1111/j.0022-3646.1985.00347.x

    Article  CAS  Google Scholar 

  • Burdette MK, United States Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Data Buoy Center (2010) Temperature and salinity data from the SEAKEYS project in the Florida Keys from 1991-05-15 to 1995-11-15 (NODC Accession 9600071). Version 1.1. National Oceanographic Data Center. https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:9600071. Accessed 13 July 2017

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72. https://doi.org/10.1016/j.jembe.2007.06.024

    Article  Google Scholar 

  • Burnison BK (1980) Modified dimethyl sulfoxide (DMSO) extraction for chlorophyll analysis of phytoplankton. Can J Fish Aquat Sci 37(4):729–733. https://doi.org/10.1139/f80-095

    Article  CAS  Google Scholar 

  • Butler MJ, Dolan TW (2017) Potential impacts of Everglades Restoration on lobster and hard bottom communities in the Florida Keys, FL (USA). Estuar Coast 40(6):1523–1539. https://doi.org/10.1007/s1223

    Article  Google Scholar 

  • Butler MJ, Hunt JH, Herrnkind WF, Childress MJ, Bertelsen R, Sharp W, Matthews T, Field JM, Marshall HG (1995) Cascading disturbances in Florida Bay, USA: cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Mar Ecol Prog Ser 129:119–125

    Article  Google Scholar 

  • Cane MA (1983) Oceanographic events during El Niño. Science 222(4629):1189–1195

    Article  CAS  PubMed  Google Scholar 

  • Caperon J, Harvey WA, Steinhilper FA (1976) Particulate organic carbon, nitrogen, and chlorophyll as measures of phytoplankton and detritus standing crops in Kaneohe Bay, Oahu, Hawaiian Islands. Pac Sci 30(4):317–327

    CAS  Google Scholar 

  • Caputo M (1996) 29 April) Bay remedy could be backfiring, freshwater flows may be causing red tide. Key West Citizen, Key West

    Google Scholar 

  • Causey B (2008) The history of massive coral bleaching and other perturbations in the Florida Keys. In: Wilkinson CR, Souter DN (eds) Status of Caribbean coral reefs after bleaching and hurricanes in 2005, vol 148. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville, pp 61–72

    Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. https://doi.org/10.1126/science.1167755

    Article  CAS  PubMed  Google Scholar 

  • Continental Shelf Associates (1991) Water Quality Protection Program for the Florida Keys National Marine Sanctuary, Phase I Report to the United States Environmental Protection Agency

  • Cook CB, Mueller EM, Ferrier MD, Annis E (2002) The influence of nearshore waters on corals of the Florida Reef Tract. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 771–788

    Google Scholar 

  • Coral Reef Ecosystems Research and Protection (1992) Joint Hearing before the Subcommittee on Environment, of the Committee on Science, Space, and Technology, and the Subcommittee on Oceanography, Great Lakes, and the Outer Continental Shelf of the Committee on merchant Marine and Fisheries, U.S. House of Representatives. 102nd Congress (Testimony of Jim Porter)

  • Crossland CJ, Hatcher BG, Atkinson MJ, Smith SV (1984) Dissolved nutrients of a high-latitude coral reef, Houtman Abrolhos Islands, Western Australia. Mar Ecol Prog Ser 14(2):159–163

    Article  CAS  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:259–262. https://doi.org/10.1038/nclimate1711

    Article  Google Scholar 

  • D’Angelo C, Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93. https://doi.org/10.1016/j.cosust.2013.11.029

    Article  Google Scholar 

  • D’Elia CF, Webb KL (1977) The dissolved nitrogen flux of reef corals. In: Proceedings of the third international coral reef symposium, pp 325–331

  • D’Elia CF, Webb KL, Porter JW (1981) Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: a significant source of N to local coral reefs? Bull Mar Sci 31(4):903–910

    Google Scholar 

  • D’Elia CF, Buddemeier RW, Smith SV (1991) A workshop on coral bleaching, coral reef ecosystems and global change: report of proceedings. Maryland Seagrant, University of Maryland, College Park

    Google Scholar 

  • D’Elia CF, Connor EE, Kaumeyer NL, Keefe CW, Wood KV, Zimmerman CF (1997) Nutrient analytical services: standard operating procedures. Technical Report Series No. 158-97. Chesapeake Biological Laboratory, Solomons

    Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. Smith, Elder, and Company, London

    Google Scholar 

  • De’ath G, Fabricius K (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20(3):840–850. https://doi.org/10.1890/08-2023.1

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci 109(44):17995–17999. https://doi.org/10.1073/pnas.1208909109

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMaria K (1996) Changes in the Florida Keys Marine Ecosystem based upon interviews with experienced residents. The Nature Conservancy and Center for Marine Conservation, Key West

    Google Scholar 

  • Devlin MJ, Brodie J (2005) Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar Pollut Bull 51(1–4):9–22. https://doi.org/10.1016/j.marpolbul.2004.10.037

    Article  CAS  PubMed  Google Scholar 

  • Downing JA, McClain M, Twilley R, Melack JM, Elser J, Rabalais NN, Lewis WM, Turner RE, Corredor J, Soto D, Yanez-Arancibia A (1999) The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46(1–3):109–148. https://doi.org/10.1023/A:100615621

    Article  Google Scholar 

  • Drog M (2017) C-111 Spreader Canal Western Project. USACE, Jacksonville

    Google Scholar 

  • Duarte C (1990) Seagrass nutrient content. Mar Ecol Prog Ser 61:201–207

    Article  Google Scholar 

  • Dubinsky ZVY, Stambler N (1996) Marine pollution and coral reefs. Glob Change Biol 2(6):511–526. https://doi.org/10.1111/j.1365-2486.1996.tb00064.x

    Article  Google Scholar 

  • Duprey NN, Yasuhara M, Baker DM (2016) Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape. Glob Change Biol 22(11):3550–3565. https://doi.org/10.1111/gcb.13432

    Article  Google Scholar 

  • Dustan P (1977) Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. Environ Geol 2(1):51–58. https://doi.org/10.1007/bf02430665

    Article  Google Scholar 

  • Dustan P, Halas JC (1987) Changes in the reef-coral community of Carysfort Reef, Key Largo, Florida: 1974 to 1982. Coral Reefs 6(2):91–106. https://doi.org/10.1007/bf00301378

    Article  Google Scholar 

  • Eakin CM, Liu G, Gomez AM, De La Cour JL, Heron SF, Skirving WJ, Geiger EF, Tirak KV, Strong AE (2016) Global coral bleaching 2014–2017: status and an appeal for observations. Reef Encounter 31(1):20–26

    Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50(2):125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028

    Article  CAS  PubMed  Google Scholar 

  • Fabricius KE, Logan M, Weeks SJ, Lewis SE, Brodie J (2016) Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Estuar Coast Shelf Sci 173:A1–A15. https://doi.org/10.1016/j.ecss.2016.03.001

    Article  Google Scholar 

  • Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283(5403):843–845. https://doi.org/10.1126/science.283.5403.843

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43(9):606–611. https://doi.org/10.2307/1312147

    Article  Google Scholar 

  • Furnas MJ, Mitchell AW, Skuza M (1995) Nitrogen and phosphorus budgets for the central Great Barrier Reef Shelf. A report to the Great Barrier Reef Marine Park Authority, Townsville

    Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301(5635):958–960. https://doi.org/10.1126/science.1086050

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg RN (1994) Proceedings of the colloquium on global aspects of coral reefs: health, hazards, and history, 1993. University of Miami, Miami

    Google Scholar 

  • Ginsburg RN, Shinn EA (1993) Preferential distribution of reefs in the Florida Reef Tract: the past is the key to the present. H21–H26. In: Proceedings of the colloquium on global aspects of coral reefs: health, hazards, and history, 1993. University of Miami, Miami

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2(6):495–509. https://doi.org/10.1111/j.1365-2486.1996.tb00063.x

    Article  Google Scholar 

  • Going with the flow? (2002) The Economist. https://www.economist.com/node/1465617. Accessed 20 July 2018

  • Goreau TF (1964) Mass expulsion of zooxanthellae from Jamaican reef communities after Hurricane Flora. Science 145(3630):383–386. https://doi.org/10.1126/science.145.3630.383

    Article  CAS  PubMed  Google Scholar 

  • Goreau TJ, Hayes RL (1994) Coral bleaching and ocean “hot spots”. Ambio-J Hum Environ Res Manag 23(3):176–180

    Google Scholar 

  • Guiry MD, Guiry GM (2013) AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 30 Nov 2018

  • Hall MO, Furman BT, Merello M, Durako MJ (2016) Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: initial observations. Mar Ecol Prog Ser 560:243–249

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398. https://doi.org/10.2307/3514476

    Article  Google Scholar 

  • Harrell FE (2019) Hmisc: Harrell Miscellaneous (R package version 4.2-0)

  • Harrison WG, Platt T, Lewis MR (1987) f-Ratio and its relationship to ambient nitrate concentration in coastal waters. J Plankton Res 9(1):235–248. https://doi.org/10.1093/plankt/9.1.235

    Article  CAS  Google Scholar 

  • Hatcher BG, Larkum AWD (1983) An experimental analysis of factors controlling the standing crop of the epilithic algal community on a coral reef. J Exp Mar Biol Ecol 69(1):61–84. https://doi.org/10.1016/0022-0981(83)90172-7

    Article  Google Scholar 

  • Heaton TH (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102. https://doi.org/10.1016/0009-2541(86)90046-x

    Article  CAS  Google Scholar 

  • Hebbali A (2018) olsrr: tools for building OLS regression models (R package version 0.5.2)

  • Heil CA, Revilla M, Glibert PM, Murasko S (2007) Nutrient quality drives differential phytoplankton community composition on the southwest Florida shelf. Limnol Oceanogr 52(3):1067–1078. https://doi.org/10.4319/lo.2007.52.3.1067

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742. https://doi.org/10.1126/science.1152509

    Article  CAS  PubMed  Google Scholar 

  • Howarth R, Paerl HW (2008) Coastal marine eutrophication: control of both nitrogen and phosphorus is necessary. PNAS 105(49):E103. https://doi.org/10.1073/pnas.0807266106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, The South West Florida Dark Water Observation Group et al (2002) Satellite images track “black water” event off Florida coast. EOS AGU Trans 83(26):281–285. https://doi.org/10.1029/2002EO000199

    Article  Google Scholar 

  • Hu C, Hackett KE, Callahan MK, Andréfouët S, Wheaton JL, Porter JW, Muller-Karger FE (2003) The 2002 ocean color anomaly in the Florida Bight: a cause of local coral reef decline? Geophys Res Lett 30(3):1151. https://doi.org/10.1029/2002gl016479

    Article  Google Scholar 

  • Hu C, Muller-Karger FE, Vargo GA, Neely MB, Johns E (2004) Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event. Geophys Res Lett 31(15):L15307. https://doi.org/10.1029/2004gl020382

    Article  Google Scholar 

  • Hubbard DK (1996) Reefs as dynamic systems. In: Birkeland C (ed) The life and death of coral reefs. Chapman and Hall, New York, pp 43–67

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265(5178):1547–1551. https://doi.org/10.1016/0006-3207(95)93800-r

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough JM (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933. https://doi.org/10.1126/science.1085046

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645):373. https://doi.org/10.1038/nature21707

    Article  CAS  PubMed  Google Scholar 

  • Jaap WC (1988) The 1987 zooxanthellae expulsion event at Florida reefs. Mass bleaching of coral reefs: a research strategy. National Undersea Research Program Report 88:24–29

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629–637. https://doi.org/10.1126/science.1059199

    Article  CAS  PubMed  Google Scholar 

  • Joyner JL, Sutherland KP, Kemp D, Berry B, Griffin A, Porter J, Amador MH, Noren HK, Lipp EK (2015) Systematic analysis of white pox disease in Acropora palmata of the Florida Keys and role of Serratia marcescens. Appl Environ Microbiol 81(13):4451–4457. https://doi.org/10.1128/AEM.00116-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassambara A (2018) ggpubr: “ggplot2” based publication ready plots (R package version 3.1.00)

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. Stable Isot Ecol Environ Sci 2:375–449. https://doi.org/10.1002/9780470691854.ch12

    Article  Google Scholar 

  • Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164(S5):S52–S63

    Article  PubMed  Google Scholar 

  • Klein CJ III, Orlando SP Jr (1994) A spatial framework for water-quality management in the Florida Keys National Marine Sanctuary. Bull Mar Sci 54(3):1036–1044

    Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop sponsored by the National Science Foundation, National Oceanic and Atmospheric Administration, and United States Geological Survey, St. Petersburg

  • Klingener N (1995 22 February) Red tide fish kill the worst in years, algae scourge rounds the Keys. Miami Herald, Miami

  • Kourafalou VH, Kang H (2012) Florida Current meandering and evolution of cyclonic eddies along the Florida Keys Reef Tract: are they interconnected? J Geophys Res 117:C05028. https://doi.org/10.1029/2011JC007383

    Article  Google Scholar 

  • Kramer BJ, Davis TW, Meyer KA, Rosen BH, Goleski JA, Dick GJ, Oh G, Gobler CJ (2018) Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS One 13(5):e0196278. https://doi.org/10.1371/journal.pone.0196278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruczynski WL, McManus F (2002) Water quality concerns in the Florida Keys: sources, effects, and solutions. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039412-37

    Google Scholar 

  • Lapointe BE (1987) Phosphorus-and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Mar Biol 93(4):561–568. https://doi.org/10.1007/BF00392794

    Article  CAS  Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131. https://doi.org/10.4319/lo.1997.42.5_part_2.1119

    Article  CAS  Google Scholar 

  • Lapointe BE, Clark MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuar Coasts 15(4):465–476. https://doi.org/10.2307/1352391

    Article  CAS  Google Scholar 

  • Lapointe BE, Matzie WR (1996) Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19(2):422–435. https://doi.org/10.2307/1352460

    Article  CAS  Google Scholar 

  • Lapointe BE, Smith NP (1987) A preliminary investigation of upwelling as a source of nutrients to Looe Key National Marine Sanctuary. NOAA Technical Memorandum, Washington, DC

    Google Scholar 

  • Lapointe BE, O’Connell JD, Garrett GS (1990) Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochemistry 10(3):289–307. https://doi.org/10.1007/bf00003149

    Article  CAS  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15(1):75–82. https://doi.org/10.2307/1352712

    Article  CAS  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1993) Modification of benthic community structure by natural eutrophication: the Belize Barrier Reef. In: Proceedings of the seventh international coral reef symposium, pp 323–334

  • Lapointe BE, Tomasko DA, Matzie WR (1994) Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bull Mar Sci 54(3):696–717

    Google Scholar 

  • Lapointe BE, Matzie WR, Barile PJ (2002) Biotic phase-shifts in Florida Bay and fore reef communities of the Florida Keys: linkages with historical freshwater flows and nitrogen loading from Everglades runoff. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 629–648. https://doi.org/10.1201/9781420039412-28

    Google Scholar 

  • Lapointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308(1):23–58. https://doi.org/10.1016/j.jembe.2004.01.019

    Article  Google Scholar 

  • Lapointe BE, Thacker K, Hanson C, Getten L (2011) Sewage pollution in Negril, Jamaica: effects on nutrition and ecology of coral reef macroalgae. Chin J Oceanol Limnol 29:775–789. https://doi.org/10.1007/s00343-011-0506-8

    Article  CAS  Google Scholar 

  • Lapointe BE, Herren LW, Paule AL (2017) Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA. Harmful Algae 70:1–22

    Article  CAS  PubMed  Google Scholar 

  • Laws EA, Redalje DG (1979) Effect of sewage enrichment on the phytoplankton population of a subtropical estuary. Pac Sci 33(2):129–144

    Google Scholar 

  • Laws EA, Redalje DG (1982) Sewage diversion effects on the water column of a subtropical estuary. Mar Environ Res 6(4):265–279. https://doi.org/10.1016/0141-1136(82)90041-1

    Article  CAS  Google Scholar 

  • Lee TN, Leaman K, Williams E, Berger T, Atkinson L (1995) Florida Current meanders and gyre formation in the southern Straits of Florida. J Geophys Res 100(C5):8607–8620. https://doi.org/10.1029/94JC02795

    Article  Google Scholar 

  • Leichter JJ, Stewart HL, Miller SL (2003) Episodic nutrient transport to Florida coral reefs. Limnol Oceanogr 48:1394–1407

    Article  Google Scholar 

  • Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152. https://doi.org/10.3354/meps07008

    Article  CAS  Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality through the Caribbean. Science 226(4672):335–337

    Article  CAS  PubMed  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967. https://doi.org/10.2307/1941447

    Article  Google Scholar 

  • Light SS, Dineen JW (1994) Water control in the Everglades: a historical perspective. Everglades: Ecosyst Restor 5:47–84

    Google Scholar 

  • Littler DS, Littler MM (2000) Caribbean Reef Plants. Offshore Graphics

  • Littler MM, Littler DS, Lapointe BE (1986) Baseline studies of herbivory and eutrophication on dominant reef communities of Looe Key National Marine Sanctuary. US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Washington, DC

  • Magnuson JJ (1990) Long-term ecological research and the invisible present. Bioscience 40(7):495–501. https://doi.org/10.2307/1311317

    Article  Google Scholar 

  • Manfrino C, Jacoby CA, Camp E, Frazer TK (2013) A positive trajectory for corals at Little Cayman Island. PLoS One 8(10):e75432. https://doi.org/10.1371/journal.pone.0075432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzello DP (2015) Rapid recent warming of coral reefs in the Florida Keys. Sci Rep 5:16762. https://doi.org/10.1038/srep16762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzello DP, Berkelmans R, Hendee JC (2007) Coral bleaching indices and thresholds for the Florida reef tract, Bahamas, and St. Croix, US Virgin Islands. Mar Pollut Bull 54(12):1923–1931. https://doi.org/10.1016/j.marpolbul.2007.08.009

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JJ, Taylor WR, Taft JL (1975) The dynamics of nitrogen and phosphorus cycling in the open waters of Chesapeake Bay. In: Church TM (ed) Marine chemistry of the coastal environment. ACS Symposium Series, vol 18. American Chemical Society, Washington, DC, pp. 664–681. https://doi.org/10.1021/bk-1975-0018.ch040

    Google Scholar 

  • McIvor CC, Ley JA, Bjork RD (1994) Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, pp 117–146

    Google Scholar 

  • McMurray SE, Henkel TP, Pawlik JR (2010) Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology 91(2):560–570. https://doi.org/10.1890/08-2060.1

    Article  PubMed  Google Scholar 

  • McMurray SE, Finelli CM, Pawlik JR (2015) Population dynamics of giant barrel sponges on Florida coral reefs. J Exp Mar Biol Ecol 473:73–80. https://doi.org/10.1016/j.jembe.2015.08.007

    Article  Google Scholar 

  • Mikelsons K, Wang M (2018) Interactive online maps make satellite ocean data accessible. EOS. https://doi.org/10.1029/2018EO096563

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Miller M, Bourque A, Bohnsack J (2002) An analysis of the loss of acroporid corals at Looe Key, Florida, USA: 1983–2000. Coral Reefs 21(2):179–182. https://doi.org/10.1007/s00338-002-0228-7

    Article  Google Scholar 

  • Montagnes DJ, Berges JA, Harrison PJ, Taylor F (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39(5):1044–1060. https://doi.org/10.4319/lo.1994.39.5.1044

    Article  CAS  Google Scholar 

  • Muehllehner N, Langdon C, Venti A, Kadko D (2016) Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009–2010): evidence for seasonal dissolution. Glob Biogeochem Cycles 30(5):661–688. https://doi.org/10.1002/2015GB005327

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27(7):454–460. https://doi.org/10.2307/1297526

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (1988) Results of a workshop on coral reef research and management in the Florida Keys: a blueprint for action. National Undersea Research Program

  • National Research Council (NRC) (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. Ocean Studies Board, Water Science and Technology Board. National Academy Press, Washington DC. https://doi.org/10.17226/9812

  • National Research Council (NRC) (2002) Florida Bay research programs and their relation to the Comprehensive Everglades Restoration Plan. National Academy Press, Washington DC

    Google Scholar 

  • Nelson NG, Munoz-Carpena R, Phlips EJ (2017) A novel quantile method reveals spatiotemporal shifts in phytoplankton biomass descriptors between bloom and non-bloom conditions in a subtropical estuary. Mar Ecol Prog Ser 567:57–78. https://doi.org/10.3354/meps12054

    Article  CAS  Google Scholar 

  • NOAA (1988) Results of a workshop on coral reef research and management in the Florida Keys: a blueprint for action. Technical Report. National Undersea Research Program, Florida

    Google Scholar 

  • NOAA (1996) Florida Keys National Marine Sanctuary Final Management Plan/Environmental Impact Statement, vol 1. NOAA, Silver Spring

    Google Scholar 

  • Nugues MM, Smith GW, Hooidonk RJ, Seabra MI, Bak RP (2004) Algal contact as a trigger for coral disease. Ecol Lett 7(10):919–923. https://doi.org/10.1111/j.1461-0248.2004.00651.x

    Article  Google Scholar 

  • O’Neil JM, Capone DG (2008) Nitrogen cycling in coral reef environments. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd edn. Academic Press, San Diego, pp 949–989. https://doi.org/10.1016/b978-0-12-372522-6.00021-9

    Chapter  Google Scholar 

  • O’Brien JM, Scheibling RE (2018) Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar Ecol Prog Ser 590:1–17. https://doi.org/10.3354/meps12530

    Article  Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25(3):291–320

    Article  Google Scholar 

  • Ogden JC, Porter JW, Smith NP, Szmant AM, Jaap WD, Forcucci D (1994) A long-term interdisciplinary study of the Florida Keys Seascape. Bull Mar Sci 54:1059–1071

    Google Scholar 

  • Ogle D (2019) FSA: simple fisheries stock assessment methods (R package version 0.8.24)

  • Parsons TR, Maika Y, Lalli CM (1984) Determination of chlorophylls and total carotenoids: spectrophotometric method. In: Parsons TR, Maika Y, Lalli CM (eds) A Manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, pp 101–106. https://doi.org/10.1016/b978-0-08-030287-4.50032-3

    Chapter  Google Scholar 

  • Patterson KL, Porter JW, Ritchie KB, Polson SW, Mueller E, Peters EC, Santavy DL, Smith GW (2002) The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci USA 99(13):8725–8730. https://doi.org/10.1073/pnas.092260099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pew Oceans Commission (2003) America’s living oceans: charting a course for sea change. Pew Oceans Commission, Arlington, pp 1–166

    Google Scholar 

  • Pilson ME, Betzer SB (1973) Phosphorus flux across a coral reef. Ecology 54(3):581–588. https://doi.org/10.2307/1935343

    Article  CAS  Google Scholar 

  • Porter JW (2002) Introduction: the Everglades, Florida Bay, and Coral Reefs of the Florida Keys. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 1–16

    Google Scholar 

  • Porter JW, Meier OW (1992) Quantification of loss and change in Floridian reef coral populations. Am Zool 32(6):625–640. https://doi.org/10.1093/icb/32.6.625

    Article  Google Scholar 

  • Porter JW, Dustan P, Jaap WC, Patterson KL, Kosmynin V, Wheaton JL, Meier O, Patterson ME, Parsons ME (2001) Patterns of spread of coral disease in the Florida Keys. 2000. Hydrobiologia 460(1):1–24. https://doi.org/10.1023/A:101317761

    Article  Google Scholar 

  • Porter JW, Kosmynin V, Patterson KL, Porter KG, Jaap WC, Wheaton JL, Hackett K, Lybolt M, Tsokos CP, Yanev G, Marcinek DM (2002) Detection of coral reef change by the Florida Keys coral reef monitoring project. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 749–769. https://doi.org/10.1201/9781420039412-32

    Chapter  Google Scholar 

  • Pratte ZA, Longo GO, Burns AS, Hay ME, Stewart FJ (2018) Contact with turf algae alters the coral microbiome: contact versus systemic impacts. Coral Reefs 37(1):1–13. https://doi.org/10.1007/s00338-017-1615-4

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Diaz RJ, Justić D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66(7):1528–1537. https://doi.org/10.1093/icesjms/fsp047

    Article  Google Scholar 

  • Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23(8):490–497. https://doi.org/10.1016/j.tim.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):230A–221. http://www.jstor.org/stable/27827150

  • Richardson LL, Goldberg WM, Carlton RG, Halas JC (1998) Coral disease outbreak in the Florida Keys: plague type II. Rev Biol Trop 46(Suppl 5):187–198

    Google Scholar 

  • Risk MJ (1999) Paradise lost: how marine science failed the world’s coral reefs. Mar Freshw Res 50(8):831–837. https://doi.org/10.1071/mf99067

    Article  Google Scholar 

  • River GF, Edmunds PJ (2001) Mechanisms of interaction between macroalgae and scleractinians on a coral reef in Jamaica. J Exp Mar Biol Ecol 261(2):159–172. https://doi.org/10.1016/s0022-0981(01)00266-0

    Article  PubMed  Google Scholar 

  • Rivera-Monroy VH, Twilley RR (1996) The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnol Oceanogr 41(2):284–296. https://doi.org/10.4319/lo.1996.41.2.0284

    Article  CAS  Google Scholar 

  • Robblee MB, Barber TR, Carlson PR Jr, Durako MJ, Fourqurean JW, Muehlstein LK, Porter D, Yarbro LA, Zieman RT, Zieman JC (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar Ecol Prog Ser 71(3):297–299

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B (2009) A safe operating space for humanity. Nature 461(7263):472. https://doi.org/10.1038/461472a

    Article  CAS  PubMed  Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202. https://doi.org/10.3354/meps062185

    Article  Google Scholar 

  • Rose CD, Sharp WC, Kenworthy WJ, Hunt JH, Lyons WG, Prager EJ, Valentine JF, Hall MO, Whitfield PE, Fourqurean JW (1999) Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay. Mar Ecol Prog Ser 190:211–222

    Article  Google Scholar 

  • Rosset S, Wiedenmann J, Reed AJ, D’Angelo C (2017) Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull 118(1–2):180–187. https://doi.org/10.1016/j.marpolbul.2017.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudnick DT, Chen Z, Childers DL, Fontaine TD (1999) Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed. Estuaries 22(2):398–416. https://doi.org/10.2307/1353207

    Article  CAS  Google Scholar 

  • Ruzicka RR, Colella MA, Porter JW, Morrison JM, Kidney JA, Brinkhuis V, Lunz KS, Macaulay KA, Bartlett LA, Meyers MK, Colee J (2013) Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser 28(489):125–141

    Article  Google Scholar 

  • Ruzicka RR, Colella M, Brinkhuis V, Huebner L, Cummings K, Boisvert T, Halperin A, Ellis A (2017) Unpublished data. Coral Reef Evaluation and Monitoring Project. Fish and Wildlife Research Institute/Florida Fish and Wildlife Conservation Commission, Saint Petersburg

  • Ryther JH, Dunstan WM (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171(3975):1008–1013. https://doi.org/10.1126/science.171.3975.1008

    Article  CAS  PubMed  Google Scholar 

  • Santavy DL, Campbell J, Quarles RL, Patrick JM, Harwell LM, Parsons M, MacLaughlin L, Halas J, Mueller E, Peters EC, Hawkridge J (2006) The epizootiology of coral diseases in South Florida. EPA/600/R-05/146. U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze

  • Savoye N, Aminot A, Treguer P, Fontugne M, Naulet N, Kérouel R (2003) Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar Ecol Prog Ser 255:27–41. https://doi.org/10.3354/meps255027

    Article  CAS  Google Scholar 

  • Selig ER, Casey KS, Bruno JF (2012) Temperature-driven coral decline: the role of marine protected areas. Glob Change Biol 18(5):1561–1570. https://doi.org/10.1111/j.1365-2486.2012.02658.x

    Article  Google Scholar 

  • Shangguan Y, Glibert PM, Alexander JA, Madden CJ, Murasko S (2017) Nutrients and phytoplankton in semienclosed lagoon systems in Florida Bay and their responses to changes in flow from Everglades restoration. Limnol Oceanogr 62(S1):S327–S347. https://doi.org/10.1002/lno.10599

    Article  CAS  Google Scholar 

  • Sharp WC (2000) Destructive urchin grazing in a seagrass bed in Western Florida: when should resources managers intervene? Florida Bay Watch, Tavernier. http://nsgl.gso.uri.edu/flsgp/flsgpg00009.pdf

  • Shinn EA, Hudson JH, Robbin DM, Lidz BH (1982) Spurs and grooves revisited: construction versus erosion, Looe Key Reef, Florida. In: Proceedings of the fourth international coral reef congress, pp 475–483

  • Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357(6349):405–408. https://doi.org/10.1126/science.aan2409

    Article  CAS  PubMed  Google Scholar 

  • Smith NP (1994) Long-term Gulf-to-Atlantic transport through tidal channels in the Florida Keys. Bull Mar Sci 54:602–609

    Google Scholar 

  • Smith NP, Pitts PA (2002) Regional-scale and long-term transport patterns in the Florida Keys. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp 343–360

    Google Scholar 

  • Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pac Sci 35(4):279–395

    CAS  Google Scholar 

  • Smith TB, Purcell J, Barito JF (2007) The rocky intertidal biota of the Florida Keys: fifty-two years of change after Stephenson and Stephenson (1950). Bull Mar Sci 80(1):1–19

    Google Scholar 

  • Somerfield PJ, Jaap WC, Clarke KR, Callahan M, Hackett K, Porter J, Lybolt M, Tsokos C, Yanev G (2008) Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27(4):951–965. https://doi.org/10.1007/s00338-008-0390-7

    Article  Google Scholar 

  • State of Florida (1974) Final Report and Recommendations for the Proposed Florida Keys Area of Critical State Concern. Department of Administration, Department of State Planning, Bureau of Land and Water Management, Tallahassee

  • Steinman J (1995) Red tide killing Keys fish. Key West Citizen, Key West

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton. https://doi.org/10.1515/9781400885695

  • Stevens WK (1997) A bay is sick. Will the cure make it worse? The New York Times. http://www.nytimes.com/1997/04/15/science/a-bay-is-sick-will-the-cure-make-it-worse.html. Accessed 01 March 2018

  • Stumpf RP, Culver ME, Tester PA, Tomlinson M, Kirkpatrick GJ, Pederson BA, Truby E, Ransibrahmanakul V, Soracco M (2003) Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2:147–160. https://doi.org/10.1016/S1568-9883(02)00083-5

    Article  CAS  Google Scholar 

  • Sutherland KP, Shaban S, Joyner JL, Porter JW, Lipp EK (2011) Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata. PLoS One 6(1–7):E23468. https://doi.org/10.1371/journal.pone.0023468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szmant AM, Forrester A (1996) Water column and sediment nitrogen and phosphorus distribution patterns in the Florida Keys, USA. Coral Reefs 15(1):21–41. https://doi.org/10.1007/BF01626075

    Article  Google Scholar 

  • Taylor WR (1960) Marine algae of the eastern tropical and subtropical coasts of the Americas. University of Michigan Press, Ann Arbor, p 870

    Google Scholar 

  • Technicon (1973) Nitrate and nitrite in water and wastewater. Industrial method number 100-70W. In: Conflo IV Operating Manual. Revision A-122 4730. Thermo Scientific Technicon Industrial Systems, Tarrytown

  • Thermo Scientific (2007) Conflo IV Operating Manual. Revision A-122 4730

  • Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals. Mar Biol 87(2):143–155. https://doi.org/10.1007/bf00392901

    Article  Google Scholar 

  • Tomascik T, Sander F (1987) Effects of eutrophication on reef-building corals. Mar Biol 94(1):53–75. https://doi.org/10.1007/bf00392900

    Article  Google Scholar 

  • Toth LT, Kuffner IB, Stathakopoulos Shinn EA (2018) A 3,000-year lag between the geological and ecological shutdown of Florida’s coral reefs. Glob Chang Biol 24(11):5471–5483. https://doi.org/10.1111/gcb.14389

    Article  PubMed  Google Scholar 

  • Trenberth KE, Hoar TJ (1996) The 1990–1995 El Niño-Southern Oscillation event: longest on record. Geophys Res Lett 23(1):57–60

    Article  Google Scholar 

  • Trimble PJ, Marban JA, Molina M, Sculley SP (1990) Special Report: Analysis of the 1989–1990 drought. Water Resources Division, Department of Research and Evaluation, South Florida Water Management District, West Palm Beach

  • Urban NH, Davis SM, Aumen NG (1993) Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. Aquat Bot 46(3–4):203–223. https://doi.org/10.1016/0304-3770(93)90002-e

    Article  CAS  Google Scholar 

  • USACE, South Florida Water Management District (SFWMD) (1999) Central and Southern Florida Project Comprehensive Review Study: Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. United States Army Corps of Engineers, Jacksonville

    Google Scholar 

  • Van Woesik R, Tomascik T, Blake S (1999) Coral assemblages and physico-chemical characteristics of the Whitsunday Islands: evidence of recent community changes. Mar Freshw Res 50(5):427–440. https://doi.org/10.1071/mf97046

    Article  Google Scholar 

  • Vega-Thurber RL, Burkepile DE, Correa AM, Thurber AR, Shantz AA, Welsh R, Pritchard C, Rosales S (2012) Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides. PLoS One 7(9):e44246. https://doi.org/10.1371/journal.pone.0044246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Chang Biol 20(2):544–554. https://doi.org/10.1111/gcb.12450

    Article  PubMed  Google Scholar 

  • Vermeij MJ, Van Moorselaar I, Engelhard S, Hörnlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One 5(12):e14312. https://doi.org/10.1371/journal.pone.0014312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750. https://doi.org/10.1890/1051-0761(1997)007%5b0737:haotgn%5d2.0.co;2

    Article  Google Scholar 

  • Voss JD, Richardson LL (2006) Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25(4):569–576. https://doi.org/10.1007/s00338-006-0131-8

    Article  Google Scholar 

  • Wagner DE, Kramer P, Van Woesik R (2010) Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar Ecol Prog Ser 408:65–78. https://doi.org/10.3354/meps08584

    Article  Google Scholar 

  • Wang L, Shantz AA, Payet JP, Sharpton TJ, Foster A, Burkepile DE, Vega Thurber R (2018) Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front Mar Sci 5:101. https://doi.org/10.3389/fmars.2018.00101

    Article  CAS  Google Scholar 

  • Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar Pollut Bull 51(5):570–579. https://doi.org/10.1016/j.marpolbul.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  • Wheaton JL, Japp WC (1988) Corals and other prominent benthic Cnidaria of Looe Key National Marine Sanctuary. Florida Marine Research Publications, Florida, p 43

    Google Scholar 

  • White MW, Porter JW (1985) The establishment and monitoring of two permanent photograph transects in Looe Key and Key Largo National Marine Sanctuaries (Florida Keys). In: Proceedings of the fifth international coral reef congress, pp 531–537

  • Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis (Use R). Springer, New York

  • Wiebe WJ, Johannes RE, Webb KL (1975) Nitrogen fixation in a coral reef community. Science 188(4185):257–259. https://doi.org/10.1126/science.188.4185.257

    Article  CAS  PubMed  Google Scholar 

  • Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret FE, Postle AD, Achterberg EP (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Change 3(2):160–164. https://doi.org/10.1038/nclimate1661

    Article  CAS  Google Scholar 

  • Wilkinson CR (1996) Global change and coral reefs: impacts on reefs, economies and human cultures. Glob Change Biol 2(6):547–558. https://doi.org/10.1111/j.1365-2486.1996.tb00066.x

    Article  Google Scholar 

  • Wilkinson CC (2004) Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Cape Ferguson

    Google Scholar 

  • Williams SL, Carpenter RC (1988) Nitrogen-limited primary productivity of coral reef algal turfs: potential contribution of ammonium excreted by Diadema antillarum. Mar Ecol Prog Ser 47:145–152. https://doi.org/10.3354/meps047145

    Article  CAS  Google Scholar 

  • Wolff NH, Mumby PJ, Devlin M, Anthony K (2018) Vulnerability of the Great Barrier Reef to climate change and local pressures. Glob Change Biol 24(5):1978–1991. https://doi.org/10.1111/gcb.14043

    Article  Google Scholar 

  • Woods J (2010) Surface water discharge and salinity monitoring of coastal estuaries in Everglades National Park, USA, in support of the Comprehensive Everglades Restoration Plan. In: Proceedings of the third international perspective on current and future state of water resources and the environment, Chennai

  • Wooldridge SA (2009) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58(5):745–751. https://doi.org/10.1016/j.marpolbul.2008.12.013

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2014) Assessing coral health and resilience in a warming ocean: why looks can be deceptive. BioEssays 36(11):1041–1049. https://doi.org/10.1002/bies.201400074

    Article  PubMed  Google Scholar 

  • Wooldridge SA, Done TJ (2009) Improved water quality can ameliorate effects of climate change on corals. Ecol Appl 19(6):1492–1499. https://doi.org/10.1890/08-0963.1

    Article  PubMed  Google Scholar 

  • Yentsch CS, Yentsch CM, Cullen JJ, Lapointe B, Phinney DA, Yentsch SW (2002) Sunlight and water transparency: cornerstones in coral research. J Exp Mar Biol Ecol 268(2):171–183. https://doi.org/10.1016/s0022-0981(01)00379-3

    Article  Google Scholar 

  • Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, Welsh R, Correa AM, Lemoine NP, Rosales S, Fuchs C (2016) Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 7:11833. https://doi.org/10.1038/ncomms11833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Hu C, Lapointe B, Melo N, Johns EM, Smith RH (2013) Satellite-observed black water events off Southwest Florida: implications for coral reef health in the Florida Keys National Marine Sanctuary. Remote Sens 5(1):415–431. https://doi.org/10.3390/rs5010415

    Article  Google Scholar 

  • Zieman JC (1987) A review of certain aspects of the life, death, and distribution of the seagrasses of the southeastern United States 1960–1985. Fla Mar Res Publ 42:53–76

    Google Scholar 

  • Zimmerman CF, Price MT, Montgomery JP (1977) Operations methods and quality control of Technicon AutoAnalyzer® systems for nutrient determinations in seawater. Technical Report No. 11. Harbor Branch Foundation, Fort Piece

Download references

Acknowledgements

This research was inspired by early discussions with John Ryther, Peter Glynn, Charlie Yentsch, and Phil Dustan. Dr. Larry Brand provided assistance with chlorophyll a analysis and Carl Zimmerman provided nutrient analytical support. Many staff, volunteers, and colleagues assisted with logistics and field monitoring efforts in the Keys over the long-term study, including Roger Bewig, Julie Bishop, Richard and Barbara Brown, Mark and Diane Littler, Mark Clark, Bill Matzie, David Tomasko, Peter Barile, Maggie Vogelsang, John November, Diana Bolton, Carl Hampp, Marie Tarnowski, and Tanju Mishara. Strike Zone Charters and the Looe Key Reef Resort Dive Shop provided boat support for many sampling events. The authors are grateful to Alex Tewfik, Elizabeth Babcock, Ed Proffitt, and several anonymous reviewers for their constructive comments. The authors also wish to thank the U.S. Geological Survey, NASA, and NOAA for providing satellite data and imagery. This is contribution #2210 from Florida Atlantic University, Harbor Branch Oceanographic Institute.

Funding

Financial support for this research was provided by the National Oceanic and Atmospheric Administration (NOAA, National Marine Sanctuaries Program), Monroe County, Herbert W. Hoover Foundation, John D. and Catherine T. MacArthur Foundation, United States Environmental Protection Agency (US EPA), National Aeronautics and Space Administration (NASA) ROSES (contract #NNX10AB69G), the “Save Our Seas” Specialty License Plate funds granted through the Harbor Branch Oceanographic Institute Foundation, and the Coastal Ocean Association of Science and Technology (COAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian E. Lapointe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: S. Shumway.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapointe, B.E., Brewton, R.A., Herren, L.W. et al. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar Biol 166, 108 (2019). https://doi.org/10.1007/s00227-019-3538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3538-9

Navigation