Skip to main content

Advertisement

Log in

Natural patches in Posidonia oceanica meadows: the seasonal biogeochemical pore water characteristics of two edge types

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seagrass meadows can be assimilated to seascape matrixes encompassing a mosaic of natural and anthropogenic patches. Natural patches within the Mediterranean Posidonia oceanica meadows show a structural particularity which consist in a duality of their edge types. One edge is eroded by bottom currents, while the adjacent meadow colonizes the bare sediments. This study aims to study the dynamics of these two edges through the investigation of the biogeochemistry (pH, total alkalinity, dissolved inorganic carbon, CO2, CH4, N2O, H2S, dissolved inorganic nitrogen, PO4 3−) within vegetated and unvegetated sediments. These observations are compared with the adjacent meadow to have a better understanding of the colonization processes. Our results reveal that the P. oceanica matrix shows differences from the vegetated edges of sand patches, especially with regard to nutrient availability, which is generally more important at the colonized edge (dissolved inorganic nitrogen up to 65.39 μM in June). A clear disparity also occurs between the eroded and colonized edge with both a seasonal and bathymetrical variation of leaf biomass with higher disparities at 10 m in June (colonized edge 1415 gDW m−2; eroded edge 1133 gDW m−2). The most important contrasts during this study were assessed in June, suggesting that the warm period of the year is more suitable for sampling to highlight disparate characteristics in temperate seagrass meadows. These findings put into light the potential importance of biogeochemical processes in the dynamics of natural patch edges. We hypothesize that they may influence the structural dynamics of P. oceanica seascapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadie A, Gobert S, Bonacorsi M, Lejeune P, Pergent G, Pergent-Martini C (2015) Marine space ecology and seagrasses. Does patch type matter in Posidonia oceanica seascapes? Ecol Indic 57:435–446. doi:10.1016/j.ecolind.2015.05.020

    Article  Google Scholar 

  • Abadie A, Lejeune P, Pergent G, Gobert S (2016) From mechanical to chemical impact of anchoring in seagrasses: the premises of anthropogenic patch generation in Posidonia oceanica meadows. Mar Pollut Bull 109:61–71

    Article  CAS  Google Scholar 

  • Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines. Editions Quae Ifremer, Versailles

    Google Scholar 

  • Angelstam P (1992) Conservation of communities—the importance of edges, surroundings and landscape mosaic structure ecological principles of nature conservation. Springer, Berlin, pp 9–70

    Book  Google Scholar 

  • Barrón C, Duarte CM, Frankignoulle M, Borges AV (2006) Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuar Coast 29:417–426. doi:10.1007/BF02784990

    Article  Google Scholar 

  • Bay D (1984) A field study of he growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquat Bot 20:43–64

    Article  Google Scholar 

  • Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern BS, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641. doi:10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2

  • Borg JA, Rowden AA, Attrill MJ, Schembri PJ, Jones MB (2006) Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar Biol 149(3):667–677. doi:10.1007/s00227-006-0250-3

    Article  Google Scholar 

  • Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guerin F, Lambert T, Morana C, Okuku E, Bouillon S (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642. doi:10.1038/ngeo2486. http://www.nature.com/ngeo/journal/v8/n8/abs/ngeo2486.html—supplementary-information

  • Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403. doi:10.1016/j.ecss.2006.01.026

    Article  Google Scholar 

  • Brooks KM (2001) An evaluation of the relationship between salmon farm biomass, organic inputs to sediments, physicochemical changes associated with those inputs and the infaunal response—with emphasis on total sediment sulfides, total volatile solids, and oxidation-reduction potential as surrogate endpoints for biological monitoring. Aquatic Environmental Sciences, 644 Old Eaglemount Road, Port Townsend, Washington 98368

  • Buia MC, Zupo V, Mazzella L (1992) Primary production and growth dynamics in Posidonia oceanica. Mar Ecol 13:2–16

    Article  CAS  Google Scholar 

  • Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–1763

    Article  CAS  Google Scholar 

  • Caffrey JM, Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Prog Ser 66:147–160

    Article  CAS  Google Scholar 

  • Calleja ML, Marbà N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf Sci 73:583–588. doi:10.1016/j.ecss.2007.02.016

    Article  Google Scholar 

  • Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res II (Top Stud Oceanogr) 44:611–629

    Article  CAS  Google Scholar 

  • Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen analysis. Limnol Oceanogr 10:135–140. doi:10.4319/lo.1965.10.1.0135

    Article  CAS  Google Scholar 

  • Clabaut P, Augris C, Pergent G, Pergent-Martini C, Pasqualini V, Bonacorsi M (2014) Les fonds marins côtiers de Corse. Cartographie biomorphosédimentaire. Editions Quae, Versailles

    Google Scholar 

  • Dauby P, Poulicek M (1995) Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquat Bot 52:217–228

    Article  Google Scholar 

  • de Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24

    Article  Google Scholar 

  • de los Santos CB, Vicencio-Rammsy B, Lepoint G, Remy F, Bouma TJ, Gobert S (2016) Ontogenic variation and effect of collection procedure on leaf biomechanical properties of Mediterranean seagrass Posidonia oceanica (L.) Delile. Mar Ecol 37(4):750–759. doi:10.1111/maec.12340

    Article  Google Scholar 

  • den Hartog C (1970) The sea-grasses of the world. North-Holland Pub. Co., Amsterdam

    Google Scholar 

  • Díaz-Almela E, Marbà N, Martínez R, Santiago R, Duarte CM (2009) Seasonal dynamics of Posidonia oceanica in Magaluf Bay (Mallorca, Spain): temperature effects on seagrass mortality. Limnol Oceanogr 54:2170–2182. doi:10.4319/lo.2009.54.6.2170

    Article  Google Scholar 

  • Dickson AG (1993) pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Res Part I 40:107–118

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Elkalay K, Frangoulis C, Skliris N, Goffart A, Gobert S, Lepoint G, Hecq J-H (2003) A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecol Model 167:1–18. doi:10.1016/S0304-3800(03)00074-7

    Article  CAS  Google Scholar 

  • Enriquez S, Marbà N, Cebriàn J, Duarte CM (2004) Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Bot Mar 47:295–306

    Article  Google Scholar 

  • Eyre BD, Ferguson AJP, Webb A, Maher D, Oakes JM (2011) Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–133. doi:10.1007/s10533-010-9425-6

    Article  CAS  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509. http://www.nature.com/ngeo/journal/v5/n7/abs/ngeo1477.html—supplementary-information

  • Gacia E, Duarte C, Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47:23–32

    Article  CAS  Google Scholar 

  • García R, Sánchez-Camacho M, Duarte CM, Marbà N (2012) Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). Estuar Coast Shelf Sci 113:240–247. doi:10.1016/j.ecss.2012.08.010

    Article  Google Scholar 

  • García-Martínez M, López-López A, Calleja ML, Marbà N, Duarte CM (2009) Bacterial community dynamics in a seagrass (Posidonia oceanica) meadow sediment. Estuar Coast 32:276–286

    Article  Google Scholar 

  • Gera A, Pages JF, Romero J, Alcoverro T (2013) Combined effects of fragmentation and herbivory on Posidonia oceanica seagrass ecosystems. J Ecol 101:1053–1061

    Article  Google Scholar 

  • Giraud G (1979) Sur une méthode de mesure et de comptage des structures foliaires de Posidonia oceanica (Linnaeus) Delile. Bull Mus d’Histoire Nat Marseille 39:33–39

    Google Scholar 

  • Gobert S, Lepoint G, Biondo R, Bouquegneau JM (2006) In situ sampling of pore waters from seagrass meadows. Biol Mar Mediterr 13:230–234

    Google Scholar 

  • Gobert S, Lepoint G, Pelaprat C, Remy F, Lejeune P, Richir J, Abadie A (2016) Temporal evolution of sand corridors in a Posidonia oceanica seascape: a 15-years study. Mediterr Mar Sci 17:777–784. doi:10.12681/mms.1816

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218

    Google Scholar 

  • Holmer M, Frederiksen MS (2007) Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry (Dordrecht) 85:169–184

    Article  CAS  Google Scholar 

  • Holmer M, Duarte CM, Marbá N (2003) Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66:223–239

    Article  CAS  Google Scholar 

  • Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36(3):227–237. doi:10.3354/ame036227

    Article  Google Scholar 

  • Infantes E, Terrados J, Orfila A, Cañellas B, Álvarez-Ellacuria A (2009) Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot Mar 52:419–427. doi:10.1515/BOT.2009.050

    Article  Google Scholar 

  • Invers O, Romero J, Pérez M (1997) Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquat Bot 59:185–194

    Article  CAS  Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546

    Article  CAS  Google Scholar 

  • Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374. doi:10.2307/3545824

    Article  Google Scholar 

  • Lepoint G, Millet S, Dauby P, Gobert S, Bouquegneau JM (2002) Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar Ecol Prog Ser 237:87–96

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) CO2SYS-program developed for the CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge

    Book  Google Scholar 

  • Li X, Mander U (2009) Future options in landscape ecology: development and research. Prog Phys Geol 33:31–48. doi:10.1177/0309133309103888

    Article  Google Scholar 

  • López NI, Duarte CM, Vallespinós F, Romero J, Alcoverro T (1998) The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 224:155–166. doi:10.1016/S0022-0981(97)00189-5

    Article  Google Scholar 

  • Marba N, Cebrian J, Enriquez S, Duarte CM (1996) Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Mar Ecol Prog Ser 133:203–215

    Article  Google Scholar 

  • Marbà N, Holmer M, Gacia E, Barron C (2006) Seagrass beds and coastal biogeochemistry. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 135–157

    Google Scholar 

  • Mateo MA, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53

    Article  CAS  Google Scholar 

  • Mazarrasa I, Marbà N, Lovelock CE, Serrano O, Lavery PS, Fourqurean JW, Kennedy H, Mateo MA, Krause-Jensen D, Steven ADL (2015) Seagrass meadows as a globally significant carbonate reservoir. Biogeosci Disc 12(16):4993–5003. doi:10.5194/bg-12-4993-2015

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi:10.4319/lo.1973.18.6.0897

    Article  CAS  Google Scholar 

  • Molinier R, Picard J (1952) Recherches sur les herbiers de phanérogames marines du littoral méditerranéen français. Ann Inst Oceanogr 27:157–234

    Google Scholar 

  • Mutti M, Hallock P (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int J Earth Sci 92:465–475

    Article  CAS  Google Scholar 

  • Olesen B, Enríquez S, Duarte CM, Sand-Jensen K (2002) Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar Ecol Prog Ser 236:89–97

    Article  Google Scholar 

  • Ondiviela B, Losada IJ, Lara JL, Maza M, Galván C, Bouma TJ, van Belzen J (2014) The role of seagrasses in coastal protection in a changing climate. Coast Eng 87:158–168. doi:10.1016/j.coastaleng.2013.11.005

    Article  Google Scholar 

  • Pedersen MO, Serrano O, Mateo MA, Holmer M (2011) Temperature effects on decomposition of a Posidonia oceanica mat. Aquat Microb Ecol 65:169–182. doi:10.3354/ame01543

    Article  Google Scholar 

  • Prado P, Alcoverro T, Romero J (2009) Welcome mats? The role of seagrass meadow structure in controlling post-settlement survival in a keystone sea-urchin species. Estuar Coast Shelf Sci 85:472–478

    Article  Google Scholar 

  • Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–304. doi:10.1016/0169-5347(94)90041-8

    Article  CAS  Google Scholar 

  • Romero J, Lee K-S, Pérez M, Mateo MA, Alcoverro T (2006) Nutrient dynamics in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 227–254

    Google Scholar 

  • Serrano O, Mateo MA, Renom P, Julià R (2012) Characterization of soils beneath a Posidonia oceanica meadow. Geoderma 185–186:26–36. doi:10.1016/j.geoderma.2012.03.020

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Evol Syst 20:171–197

    Article  Google Scholar 

  • Vacchi M, Montefalcone M, Bianchi CN, Morri C, Ferrari M (2012) Hydrodynamic constraints to the seaward development of Posidonia oceanica meadows. Estuar Coast Shelf Sci 97:58–65. doi:10.1016/j.ecss.2011.11.024

    Article  Google Scholar 

  • Vacchi M, De Falco G, Simeone S, Montefalcone M, Morri C, Ferrari M, Bianchi CN (2017) Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf Proc Land 42:42–54. doi:10.1002/esp.3932

    Article  Google Scholar 

  • Weiss RF (1981) Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J Chromatogr Sci 19:611–616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marc-Vincent Commarieu for TA analysis, and Renzo Biondo for nutrient analysis. We also thank Jonathan Richir, Nicolas Cimiterra and Michèle Leduc for their support during the scuba diving sampling and the acquisition of the temperature and light data. This study is part of the STARE-CAPMED (STAtion of Reference and rEsearch on Change of local and global Anthropogenic Pressures on Mediterranean Ecosystems Drifts) program funded by the Territorial Collectivity of Corsica and by the French Water Agency (PACA-Corsica). The GC was acquired with funds from the Fonds National de la Recherche Scientifique (FNRS) (Contract No. 2.4.598.07). Alberto V. Borges is a senior research associate at the FNRS. Arnaud Abadie acknowledges a CIFRE Ph.D. Grant (2013/0470) of the French ANRT (Association Nationale Recherche Technologie). We thank the two anonymous referees who contributed to improve the manuscript with constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Abadie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Responsible Editor: M. Huettel.

Reviewed by S. Enriquez Dominguez and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadie, A., Borges, A.V., Champenois, W. et al. Natural patches in Posidonia oceanica meadows: the seasonal biogeochemical pore water characteristics of two edge types. Mar Biol 164, 166 (2017). https://doi.org/10.1007/s00227-017-3199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3199-5

Navigation