Skip to main content
Log in

Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We measured monthly dissolved oxygen (DO) changes in situ benthic incubations from March 2001 to October 2002 in aPosidonia oceanica meadow and unvegetated sediments of Magalluf Bay (Mallorca Island, Spain) to determine gross primary production (GPP), community respiration (R), and net community production (NCP). From June 2001 to October 2002, we also measured fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TAlk). The yearly integrated metabolic rates based on DO changes show that theP. oceanica communities are net autotrophic while the metabolic rates in the unvegetated benthic communities are nearly balanced. Higher calcium carbonate (CaCO3) cycling, both in terms of production and dissolution, was observed inP. oceanica communities than in unvegetated benthic communities. In theP. oceanica meadow, the annual release of CO2 from net CaCO3 production corresponds to almost half of the CO2 uptake by NCP based on DIC incubations. In unvegetated benthic communities, the annual uptake of CO2 from net CaCO3 dissolution almost fully compensates the CO2 release by NCP based on DIC incubations. CaCO3 dynamics is potentially a major factor in CO2 benthic fluxes in seagrass and carbonate-rich temperate coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agawin, N. S. R. andC. M. Duarte. 2002. Evidence of direct particle trapping by a tropical seagrass meadow.Estuaries 25: 1205–1209.

    Article  Google Scholar 

  • Borges, A. V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?Estuaries 28:3–27.

    CAS  Google Scholar 

  • Broecker, W. S. andT.-H. Peng. 1982. Tracers in the Sea, 1st edition. Eldigio Press New York.

    Google Scholar 

  • Burdige, D. J. andR. C. Zimmerman. 2002. Impact of seagrass density on carbonate dissolution in Bahamian sediments.Limnology and Oceanography 47:1751–1763.

    CAS  Google Scholar 

  • Canals, M. andE. Ballesteros. 1997. Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea.Deep Sea Research II 44:611–629.

    Article  CAS  Google Scholar 

  • Canfield, D. E., B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Rassing, B. Thamdrup, J. W. Hansen, L. P. Nielsen, andP. O. J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments.Marine Geology 113:27–40.

    Article  CAS  Google Scholar 

  • Carritt, D. E. andJ. H. Carpenter. 1966. Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in seawater; a NASCO report.Journal of Marine Research 24:286–319.

    CAS  Google Scholar 

  • Diaz del Rio, V., L. Somoza, J. L. Goy, C. Zazo, J. Rey, F. J. Hernandez-Molina, andG. Mateu. 1994. Mapa Fisiográfico de la Bahía de Palma.Publicaciones Especiales del Instituto Español de Oceanografía 16:39.

    Google Scholar 

  • Dickson, A. G. 1993. PH buffers for sea water media based on the total hydrogen ion concentration scale.Deep-Sea Research I 40:107–118.

    Article  CAS  Google Scholar 

  • Duarte, C. M. andC. L. Chiscano. 1999. Seagrass biomass and production: A reassessment.Aquatic Botany 1334:1–16.

    Google Scholar 

  • Duarte, C. M., J. J. Middelburg, andN. Caraco. 2004. Major role of marine vegetation on the oceanic carbon cycle.Biogeosciences Discussions 1:659–679.

    Google Scholar 

  • Frankignoulle, M., C. Canon, andJ.-P. Gattuso. 1994. Marine calcification as a source of carbon dioxide: Positive feedback to increasing atmospheric CO2.Limnology and Oceanography 39:458–462.

    Article  CAS  Google Scholar 

  • Frankignoulle, M. andA. Disteche. 1987. Study of the transmission of the diurnal CO2 concentration changes observed above aPosidonia seagrass bed: A method to determine the turbulent diffusion coefficient in an 8-m water column.Continental Shelf Research 7:67–76.

    Article  Google Scholar 

  • Frankovich, T. A. andJ. C. Zieman. 1994. Total epiphyte and epiphytic carbonate production onThalassia testudium across Florida Bay.Bulletin of Marine Science 54:679–695.

    Google Scholar 

  • Gacia, E., C. M. Duarte, N. Marba, J. Terrados, H. Kennedy, M. Fortes, andN. H. Tri. 2003. Sediment deposition and production in SE-Asia seagrass meadows.Estuarine Coastal and Shelf Science 56:909–919.

    Article  CAS  Google Scholar 

  • Gacia, E., C. M. Duarte, andJ. J. Middelburg. 2002. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow.Limnology and Oceanography 47:23–32.

    CAS  Google Scholar 

  • Gattuso, J.-P., M. Frankignoulle, andR. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems.Annual Review of Ecology and Systematics 29:405–434.

    Article  Google Scholar 

  • Gattuso, J.-P., M. Pichon, B. Delesalle, andM. Frankignoulle. 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia).Marine Ecology Progress Series 96:259–267.

    Article  Google Scholar 

  • Gazeau, F., C. M. Duarte, J.-P. Gattuso, C. Barrón, N. Navarro, S. Ruíz, Y. T. Prairie, M. Calleja, B. Delille, M. Frankignoulle, andA. V. Borges. 2004. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean).biogeosciences Discussions 1:755–802.

    Google Scholar 

  • Hansen, H. P. andF. Koroleff. 1999. Determination of nutrients, p. 170–174.In K. Grasshoff, K. Kremling, and M. Ehrhardt (eds.) Methods of Seawater Analysis, 3rd edition. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Hansen, J. W., B. Thamdrup, andB. B. Jørgensen. 2000. Anoxic incubation of sediment in gas-tight plastic bags: A method for biogeochemical process studies.Marine Ecology Progress Series 208:273–282.

    Article  Google Scholar 

  • Hemminga, M. andC. M. Duarte. 2000. Seagrass Ecology, 1st edition. Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Holmer, M., C. M. Duarte, H. T. S. Boschker, andC. Barrón. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments.Aquatic Microbial Ecology 36:227–237.

    Article  Google Scholar 

  • Holmer, M., C. M. Duarte, andN. Marba. 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments.Biogeochemistry 66:223–239.

    Article  CAS  Google Scholar 

  • Huettel, M. andG. Gust. 1992. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows.Marine Ecology Progress Series 82:187–197.

    Article  Google Scholar 

  • Kirk, J. T. O. 1983. Light and Photosynthesis in Aquatic Ecosystems, 1st edition. Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Ku, T. C. W., L. M. Walter, M. L. Coleman, R. E. Blake, andA. M. Martini. 1999. Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, south Florida platform, U.S.A.Geochimica et Cosmochimica Acta 63:2529–2546.

    Article  CAS  Google Scholar 

  • Lepoint, G., S. Havelange, S. Gobert, andJ. M. Bouquegneau. 1999. Fauna vs flora contribution to the leaf epiphytes biomass in aPosidonia oceanica seagrass bed (Revellata Bay, Corsica).Hydrobiologia 394:63–67.

    Article  Google Scholar 

  • Lopez, N. I., C. M. Duarte, F. Vallespinós, J. Romero, andT. Alcoverro. 1995. Bacterial activity in NW Mediterranean seagrass (Posidonia oceanica) sediments.Journal of Experimental Marine Biology and Ecology 187:39–49.

    Article  Google Scholar 

  • Mateo, M. A., J. Romero, M. Pérez, M. M. Littler andD. S. Littler. 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrassPosidonia oceanica.Estuarine and Coastal Shelf Science 44:103–110.

    Article  Google Scholar 

  • Mateo, M. Á., J.-L. Sánchez-Lizaso, andJ. Romero. 2003.Posidonia oceanica “banquettes”: A preliminary assessment of the relevance for meadow carbon and nutrient budget.Estuarine and Coastal Marine Science 56:85–90.

    Article  Google Scholar 

  • McGlathery, K., R. Marino, andR. W. Howarth. 1994. Variable rates of phosphate uptake by shallow marine carbonate sediments: Mechanisms and ecological significance.Biogeochemistry 25:127–146.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., C. M. Duarte, andJ.-P. Gattuso. 2005. Respiration in coastal benthic communities, p. 206–224.In P. A. del Giorgio and P. J. LeB Williams (eds.), Respiration in Aquatic Ecosystems. Oxford University Press, Oxford, U.K.

    Chapter  Google Scholar 

  • Modigh, M., M. Lorenti, andL. Mazzella. 1998. Carbon assimilation inPosidonia oceanica: Biotic determinants.Botanica Marina 41:249–256.

    Article  CAS  Google Scholar 

  • Morse, J. W., J. J. Zullig, R. L. Iverson, G. R. Chopin, A. Mucci, andF. J. Millero. 1987. The influence of seagrass bed on carbonate sediments in the Bahamas.Marine Chemistry 22:71–83.

    Article  CAS  Google Scholar 

  • Nelsen, Jr.,J. E. andR. N. Ginsburg. 1986. Calcium carbonate production by epibionts onThalassia in Florida Bay.Journal of Sedimentary Petrology 56:622–628.

    CAS  Google Scholar 

  • Ogrinc, N., J. Faganeli, andJ. Pezdic. 2003. Determination of organic carbon remineralization in near-shore marine sediments (Gulf of Trieste, Northerm Adriatic) using stable carbon isotopes.Organic Geochemistry 34:681–692.

    Article  CAS  Google Scholar 

  • Romero, J. 1988. Epifitos de las hojas dePosidonia oceanica: Variaciones estacionales y batimetricas de biomasa en la pradera de las islas Medes (Girona).Oecologica, Aquatica 9:19–25.

    Google Scholar 

  • Roy, R., L. Roy, J. C. Vogel, C. Porter-Moore, T. Pearson, C. E. Good, F. J. Millero, andD. M. Campbell. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C.Marine Chemistry 44:249–267.

    Article  CAS  Google Scholar 

  • Smith, S. V. andG. S. Key. 1975. Carbon dioxide and metabolism in marine environments.Limnology and Oceanography 20:493–495.

    CAS  Google Scholar 

  • Yates, K. K. andR. B. Halley. 2003. Measuring coral reef community metabolism using new benthic chamber technology.Coral Reefs 22:247–255.

    Article  Google Scholar 

  • Yates, K. K. andR. B. Halley. 2006. Diurnal variation in rates of calcification and carbonates sediment dissolution in Florida Bay.Estuaries and Coasts 29:24–39.

    CAS  Google Scholar 

  • Ziegler, S. andR. Benner. 1998. Ecosystem metabolism in a subtropical, seagrass-dominated lagoon.Marine Ecology Progress Series 173:1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Barrón.

Additional information

Deceased March 13, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrón, C., Duarte, C.M., Frankignoulle, M. et al. Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow. Estuaries and Coasts: J ERF 29, 417–426 (2006). https://doi.org/10.1007/BF02784990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784990

Keywords

Navigation