Skip to main content
Log in

Implications of geometric plasticity for maximizing photosynthesis in branching corals

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 μmol photons m−2 s−1. Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achituv Y, Dubinsky Z (1990) Evolution and zoogeography of coral reefs. In: Dubinsky Z (ed) Ecosystems of the world 25. Coral Reefs. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003a) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259

    Article  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003b) Kinetics of photoacclimation in corals. Oecologia 134:23–31

    Article  Google Scholar 

  • Anthony KRN, Hoogenboom MO, Connolly SR (2005) Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct Ecol 19:17–26

    Article  Google Scholar 

  • Battery JF, Porter JW (1989) Photoadaptation as a whole organism response in Montastrea annularis. Proc 6th Int Coral Reef Symp 3:79–87

    Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastra aspera. Mar Ecol Prog Ser 242:119–129

    Article  Google Scholar 

  • Bruno JF, Edmunds PJ (1997) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78(7):2177–2190

    Google Scholar 

  • Bruno JF, Edmunds PJ (1998) Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing and Michelotti): the effect of morphology and water flow on aggregate respiration. J Exp Mar Biol Ecol 229:187–195

    Article  Google Scholar 

  • Chalker BE, Dunlap WC, Oliver JK (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J Exp Mar Biol Ecol 73:37–56

    Article  Google Scholar 

  • Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116

    Article  Google Scholar 

  • Dove S, Oritz JC, Enriquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Monipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158

    Article  Google Scholar 

  • Dove S, Lovell C, Fine M, Deckenback J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ 31:1523–1533

    Article  CAS  Google Scholar 

  • Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light and shade-adapted colonies f the hermatypic coral Stylophora pistillata. Proc R Soc Biol Sci Ser B222:203–214

    Article  Google Scholar 

  • Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bull Mar Sci 29:79–95

    Google Scholar 

  • Enriquez S, Pantoja-Reyes NI (2005) Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145:235–243

    Article  Google Scholar 

  • Enriquez S, Merino M, Iglesias-Prieto R (2002) Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar Biol 140(5):891–900

    Article  CAS  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283(5403):843–845

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eliat. Nature 289:172–174

    Article  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden, MA

    Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    Article  Google Scholar 

  • Goulet TL, Coffroth MA (1997) A within colony comparison of zooxanthella genotypes in the Caribbean gorgonian Plexaura kuna. Proc 8th Int Coral Reef Symp 2:1331–1334

    CAS  Google Scholar 

  • Graus RR, Macintyre IG (1976) Light control of growth form in colonial reef corals: computer simulation. Science 193:895–897

    Article  CAS  Google Scholar 

  • Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32:135–154

    Article  CAS  Google Scholar 

  • Helmuth B, Timmerman BEH, Sebens KP (1997a) Interplay of host morphology and symbiont microhabitat in coral aggregation. Mar Biol 130:1–10

    Article  Google Scholar 

  • Helmuth BS, Sebens KP, Daniel TL (1997b) Morphological variation in coral aggregations: branch spacing and mass flux to coral tissues. J Exp Mar Biol Ecol 209:233–259

    Article  Google Scholar 

  • Henninge SJ, Smith DJ, Perkins R, Consalvey M, Paterson DM, Suggett DJ (2008) Photoacclimation, growth and distribution of massive coral species in clear and turbid waters. Mar Ecol Prog Ser 369:77–88

    Article  Google Scholar 

  • Hill R, Schreiber U, Gademann R, Larkum A, Kuhl M, Ralph PJ (2004) Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar Biol 144:633–640

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86

    Article  Google Scholar 

  • Hood GM (2010) PopTools Version 3.2.5. Available at: http://www.poptools.org

  • Hoogenboom MO, Connolly SR (2009) Defining fundamental niche dimensions of corals: synergistic effects of colony size, light, and flow. Ecology 90(3):767–780

    Article  Google Scholar 

  • Hoogenboom MO, Anthony KRN, Connolly SR (2006) Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser 313:1–12

    Article  CAS  Google Scholar 

  • Hoogenboom MO, Connolly SR, Anthony KRN (2008) Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology 89(4):1144–1154

    Article  Google Scholar 

  • Hoogenboom MO, Connolly SR, Anthony KRN (2009) Effects of photoacclimation on the light niche of corals: a process-based approach. Mar Biol 156(12):2493–2503

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench PK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench PK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates.II. Response of chlorophyll-protein complexes to different photon-flux densities. Mar Biol 130:23–33

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21(4):540–547

    Article  CAS  Google Scholar 

  • Jokiel PL, Morrissey JI (1986) Influence of size on primary production in the reef coral Pocillopora damicornis and the macroalga Aconthophora spicifera. Mar Biol 91:15–26

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum A, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, Vermeij MJA, Maier C (2005) Morphogenesis of the branching reef coral Madracis mirabilis. Proc R Soc Biol Sci Ser B272(1559):127–133

    Article  Google Scholar 

  • Kaniewska P, Anthony KRN, Hoegh-Guldberg O (2008) Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata. Mar Biol 155(6):649–660

    Article  Google Scholar 

  • Kaniewska P, Magnusson SH, Anthony KRN, Reef R, Kuhl M, Hoegh-Guldberg O (2011) Importance of macro-versus microstructure in modulating light levels inside coral colonies. J Phycol 47:846–860

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Kuhl M, Cohen Y, Daalsgard T, Jorgenen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern great barrier reef corals, relative to those of the Caribbean. Limnol Oceanogr 48(5):2046–2054

    Article  Google Scholar 

  • Lesser MP (2013) Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things? Coral Reefs 32:25–33

    Article  Google Scholar 

  • Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178(2):153–179

    Article  CAS  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049

    Article  CAS  Google Scholar 

  • Marcelino LA, Westneat MW, Stoyneva V, Henss J, Rogers JD, Radosevich A, Turzitsky V, Siple M, Fang A, Swain TD, Fung J, Backman V (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS ONE 8:e61492

    Article  CAS  Google Scholar 

  • Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091

    Article  CAS  Google Scholar 

  • Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17(12):551–557

    Article  Google Scholar 

  • Muko S, Kawasaki K, Sakai K (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Oliver JK, Chalker BE, Dunlap WC (1983) Bathymetric adaptations of reef-building corals at davies reef, great barrier reef, Australia. I. Long-term growth responses of Acropora formosa (Dana 1846). J Exp Mar Biol Ecol 178:153–179

    Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptaion in light- and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:161–180

    Article  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Ralph PJ, Larkum AWD, Kuhl M (2005) Temporal patterns in effective quantum yield of individual zooxanthellae expelled during bleaching. J Exp Mar Biol Ecol 316(1):17–28

    Article  Google Scholar 

  • Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  • Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16(17):3721–3733

    Article  CAS  Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. P Natl Acad Sci USA 105(30):10444–10449

    Article  CAS  Google Scholar 

  • Sampayo EM, Dove S, Lajeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18(3):500–519

    Article  CAS  Google Scholar 

  • Sebens KP (1997) Adaptive responses to water flow: morphology, energetics, and distribution of reef corals. Proc 8th Int Coral Reef Symp 2:1053–1058

    Google Scholar 

  • Silsbe GM, Kromkamp JC (2012) Modeling the irradiance dependency of the quantum efficiency of photosynthesis. Limnol Oceanogr Method 10:645–652

    Article  CAS  Google Scholar 

  • Stambler N, Dubinsky Z (2005) Corals as light collectors: an integrating sphere approach. Coral Reefs 24:1–9

    Article  Google Scholar 

  • Stimson J (1997) The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 214:35–48

    Article  Google Scholar 

  • Sultan SE, Spencer HG, Schmitt JM (2002) Metapopulation structure favors plasticity over local adaptation. Am Nat 160(2):271–283

    Article  Google Scholar 

  • Titlyanov EA, Titlyanova TV, van Woesik R, Yamazato K (2002) Acclimation of the hermatypic coral Stylophora pistillata to bright light. Russ J Mar Biol 28(Supplement 1):S41–S46

    Article  CAS  Google Scholar 

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the great barrier reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148

    Article  Google Scholar 

  • Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116

    Article  Google Scholar 

  • Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10(5):212–217

    Article  CAS  Google Scholar 

  • Wangpraseurt D, Larkum AWD, Ralph PJ, Kuhl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316

    Article  Google Scholar 

  • Warner WEC, Chilcoat G, McFarland FK, Fitt KW (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastrea. Mar Biol 141:31–38

    Article  CAS  Google Scholar 

  • Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proc 5th Int Coral Reef Symp 4:107–112

    Google Scholar 

  • Wolstenholme JK, Wallace CC, Chen CA (2003) Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22(2):155–166

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Australian Research Council and the University of Queensland. We thank N. Kongjandre, A. Gallenne and M. Stock for assistance with fieldwork. This is a contribution from the ARC Centre of Excellence for Coral Reef Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kaniewska.

Additional information

Communicated by R. Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2013_2336_MOESM1_ESM.eps

Estimated whole-branch ΦPSII distribution for Acropora humilis at 5 m (a, c and e) and 18 m (b, d and f), from compass directions north (a-b) south-east (c-d) and south-west (e-f). Each distribution was obtained from 100 Monte Carlo iterations using Equation 2, where E is the whole-colony irradiance distributions (Fig 2) and rETRmax and Ek are estimated from rapid light curve measurements (Table 2). (EPS 1695 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaniewska, P., Anthony, K.R.N., Sampayo, E.M. et al. Implications of geometric plasticity for maximizing photosynthesis in branching corals. Mar Biol 161, 313–328 (2014). https://doi.org/10.1007/s00227-013-2336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2336-z

Keywords

Navigation