Skip to main content
Log in

Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caeruleus

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Pomatoceros caeruleus possesses a pair of simple acinar calcium-secreting glands lying in the ventral peristomium. Each gland has a single large secretory acinus containing columnar secretory cells with basal nuclei. Golgi complexes and flattened cisternae of the rough endoplasmic reticulum are abundant in the midregion and secretory vacuoles fill the apical cytoplasm. Elongate microvilli extend from the apices of the cells into the gland lumen. An organelle-free zone, the intracellular channel, extends from near the base almost to the apex of the cells. It is bordered on one side by the lateral cell membranes and is separated from the organelle compartment by elongate profiles of the rough endoplasmic reticulum.

The secretory products of the calcium-secreting glands have the form of cubic or rhombohedral granules with average dimensions of 150–200 mμ on a side. The granules are composed of a fibrous organic matrix in which needle-like calcite crystals are deposited. The possible mode of synthesis of the calcified secretory granules is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannasch, P.: Hüllenlose Cytoplasmainclusionen und ihre Beziehung zur Sekretbildung im exokrinen Pankreas der Maus. J. Ultrastruct. Res. 15, 528–542 (1966).

    Google Scholar 

  • Borle, A. B.: Membrane transfer of calcium. Clin. Orthop. Rel. Res. 52, 267–291 (1967).

    Google Scholar 

  • Crane, R. K.: Structural and functional organization of an epithelial cell brush border. In: Intracellular transport (C. B. Warren, ed.). Symp. Internat. Soc. Cell. Biol. 5, 71–102 (1967).

  • De Duve, C., Wattiaux, R.: Functions of lysosomes. Ann. Rev. Physiol. 28, 485–492 (1966).

    Google Scholar 

  • Ericsson, J. L. E., Trump, B. F., Weibel, J.: Electron microscopic studies of the proximal tubule of the rat kidney. II. Cyto-segresomes and cytosomes: their relationship to each other and the lysosome concept. Lab. Invest. 14, 1341–1365 (1965).

    Google Scholar 

  • Erlandson, R. A.: A new Maraglas, D.E.R. 732 emebdment for electron microscopy. J. Cell Biol. 22, 704–709 (1964).

    Google Scholar 

  • Friend, D. S.: Cytochemical staining of multivesicular body and Golgi vesicles. J. Cell Biol. 41, 269–279 (1969).

    Google Scholar 

  • Halstead, L. B.: Are mitochondria directly involved in biological mineralization ? The mitochondrion and the origin of bone. Calc. Tiss. Res. 3, 103–104 (1969).

    Google Scholar 

  • Hedley, R. H.: Studies on serpulid tube formation. I. The secretion of the calcareous and organic components of the tube by Pomatoceros triqueter. Quart. J. micro. Sci. 97, 411–419 (1956a).

    Google Scholar 

  • —: Studies on serpulid tube formation. II. The calcium-secreting glands in the peristomium of Spirorbis, Hydroides, and Serpula. Quart. J. micr. Sci. 97, 421–427 (1956b).

    Google Scholar 

  • Helander, H. F.: Morphology of animal secretory gland cells. In: Organisation der Zelle. II. Sekretion und Exkretion, p. 2–21. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • Holtzman, E., Dominitz, R.: Cytochemical studies of lysosomes, Golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J. Histochem. Cytochem. 16, 320–336 (1968).

    Google Scholar 

  • Jamieson, J. D., Palade, G. E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J. Cell Biol. 34, 577–596 (1967a).

    Google Scholar 

  • —: Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J. Cell Biol. 34, 597–615 (1967b).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • McGee-Russell, S. M.: The method of combined observations with light and electron microscopes applied to the study of histochemical colourations in nerve cells and oocytes. In: Cell structure and its interpretation (S. M. McGee-Russell and K. A. Ross, eds.), pp. 183–207. London: Edward Arnold (Publishers) Ltd. 1968.

    Google Scholar 

  • McNabb, J. D., Sandburn, E.: Filaments in the microvillus border of intestinal cells. J. Cell Biol. 22, 701–704 (1964).

    Google Scholar 

  • Meek, G. A., Bradbury, S.: Localization of thiamine pyrophosphatase activity in the Golgi apparatus of a mollusc Helix aspersa. J. Cell Biol. 18, 73–85 (1963).

    Google Scholar 

  • Millonig, G. A.: A modified procedure for lead staining of thin sections. J. biophys. biochem. Cytol. 11, 736–739 (1961).

    Google Scholar 

  • Neff, J. M.: Calcium carbonate tube formation by serpulid polychaete worms: Physiology and ultrastructure. Ph. D. Thesis, Duke University, 305 pp. 1967.

  • —: Mineral regeneration by serpulid polychaete worms. Biol. Bull. 136, 76–90 (1969).

    Google Scholar 

  • Neutra, M., Leblond, C. P.: Radioautographic comparison of the uptake of galactose-H3 and glucose-H3 in the Golgi region of various cells secreting glycoproteins or mucopolysaccharides. J. Cell Biol. 30, 137–150 (1966).

    Google Scholar 

  • Novikoff, A. B., Essner, B. E., Quintana, N.: Golgi apparatus and lysosomes. Fed. Proc. 23, 1010–1022 (1964).

    Google Scholar 

  • Rambourg, A., Hernandez, W., Leblond, C. P.: Detection of complex carbohydrates in the Golgi apparatus of rat cells. J. Cell Biol. 40, 395–414 (1969).

    Google Scholar 

  • Revel, J. P., Hay, E. D.: An autoradiographic and electron microscopic study of collagen synthesis in differentiating cartilage. Z. Zellforsch. 61, 110–144 (1963).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Rohr, H. von, Walter, S.: Die Mucopolysaccharide-Synthese in ihrer Beziehung zur submikroskopischen Struktur der Knorpelzelle. Acta anat. (Basel) 64, 223–234 (1966).

    Google Scholar 

  • Smith, R. E., Farquar, M. G.: Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J. Cell Biol. 31, 319–347 (1966).

    Google Scholar 

  • Soulier, A.: Études sur quelques points de l'anatomie des annelides tubicoles de la région de Cette. Organes sécrétéurs du tube et appareil digestif. Trav. Inst. Zool. Montpellier et Stat Marit. Cette. Ser 2 (2), 310 pp. (1891).

  • Strauss, W.: Lysosomes, phagosomes and related particles. In: Enzyme cytology (D. B. Roodyn, ed.), pp. 239–319. New York: Academic Press 1967.

    Google Scholar 

  • Talmage, R. V.: Calcium homeostasis — calcium transport — parathyroid action. The effects of parathyroid hormone on the movement of calcium between bone and fluid. Clin. Orthop. Rel. Res. 67, 210–224 (1969).

    Google Scholar 

  • Thomas, J. G.: Pomatoceros, Sabella, and Amphitrite. Liverpool Mar. Biol. Comm. Mem. (33) 44 pp. (1940).

  • Tigyi, A., Montsko, T., Komaromy, L., Lissak, K.: Comparative ultrastructural analysis of the mechanism of secretion. Acta physiol. Acad. Sci. hung. 33, 127–140 (1968).

    Google Scholar 

  • Travis, D. F.: The structure and organization of and the relationship between, the inorganic crystals and the organic matrix of the prismatic region of Mytilus edulis. J. Ultrstruct. Res. 23, 183–215 (1968).

    Google Scholar 

  • Vovelle, J.: Processus glandulaires impliqués dans la réconstitution du tuhe chez Pomatoceros triqueter (L.) Annelide Polychaete (Serpulidae). Bull. Lab. Marit. Dinard. (42), 10–32 (1956).

    Google Scholar 

  • Watabe, N.: Studies on shell formation XI. Crystal matrix relationships in the inner layers of mollusc shells. J. Ultrastruct. Res. 12, 351–370 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work represents a portion of a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Duke University. I wish to express my thanks to Dr. Karl M. Wilbur and Dr. Norimitsu Watabe for their advice and encouragement during this study. This study was supported by Public Health Service Grants 5TI DE 92-05 and DE 02668 from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neff, J.M. Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caeruleus . Z. Zellforsch. 120, 160–186 (1971). https://doi.org/10.1007/BF00335534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335534

Key-Words

Navigation