Skip to main content
Log in

Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa

  • Feature Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Zoanthids of the order Zoantharia (Anthozoa: Hexacorallia) exhibit high intraspecific morphological variability, but whether this is due to polymorphism, phenotypic plasticity or a combination of both remains unknown. To address this knowledge gap, in November 2010, eight colonies each of Zoanthus sansibaricus and Palythoa tuberculosa were sampled from three reefs off the south of mainland Singapore and transplanted to a shallow experimental site. The colonies were then distributed under two types of treatment frames: control and shaded. After 87 days, morphometric characters were extracted from macro-images. Reaction norms, principal components analysis, analysis of variance and canonical discriminant analysis all demonstrated light-induced changes in morphology. Patterns of plastic changes were similar for both species: shaded colonies had larger polyps as compared to control colonies. The presence of plastic responses in zoanthids may facilitate their colonization of a broad range of habitats as well as help them to withstand temporal changes in their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259

    Article  Google Scholar 

  • Bernardo J (1994) Experimental analysis of allocation in two divergent, natural salamander populations. Am Nat 143:14–38

    Article  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Bruno JF, Edmunds PJ (1997) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78:2177–2190

    Google Scholar 

  • Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS (1995) Patterns of genetic subdivision in populations of a clonal cnidarian, Zoanthus coppingeri, from the Great Barrier Reef. Mar Biol 122:665–673

    Article  Google Scholar 

  • Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS (1997) Zoanthids (Anthozoa, Hexacorallia) from the Great Barrier Reef and Torres Strait, Australia: systematics, evolution and a key to species. Coral Reefs 16:55–68

    Article  Google Scholar 

  • Chen EC (2010) The effects of shading on spoon seagrass (Halophila ovalis) in Singapore. Honours dissertation, National University of Singapore

  • Chou LM (1996) Response of Singapore reefs to land reclamation. Galaxea 13:85–92

    Google Scholar 

  • Davy SK, Lucas IAN, Turner JR (1996) Carbon budgets in temperate anthozoan–dinoflagellate symbioses. Mar Biol 126:773–783

    Article  Google Scholar 

  • DeJong G (1990) Quantitative genetics of reaction norms. J Evol Biol 3:447–468

    Article  Google Scholar 

  • Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107

    Article  Google Scholar 

  • Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bull Mar Sci 29:79–95

    Google Scholar 

  • Ebert TA (1996) Adaptive aspects of phenotypic plasticity in echinoderms. Oceanol Acta 19:347–355

    Google Scholar 

  • Foster AB (1979) Phenotypic plasticity in the reef corals Montastrea annularis and Siderastrea siderea. J Exp Mar Biol Ecol 39:25–54

    Article  Google Scholar 

  • Garland T, Kelly SA (2006) Phenotypic plasticity and experimental evolution. J Exp Biol 209:2344–2361

    Article  Google Scholar 

  • Gleason DF (1992) The control and adaptive significance of morphological variation in the reef coral Porites astreoides. Ph.D. thesis. University of Houston, Houston

  • Graus RR, Macintyre IG (1982) Variation in growth forms of the reef coral Montastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. Smithson Contrib Mar Sci 12:441–464

    Google Scholar 

  • Grill CP, Moore AJ, Brodie ED (1997) The genetics of phenotypic plasticity in a colonizing population of the ladybird beetle, Harmonia axyridis. Heredity 78:261–269

    Google Scholar 

  • Hair JF, Black B, Babin B, Anderson RE, Tatham RL (2006) Multivariate data analysis, 6th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Haywick DW, Mueller EM (1997) Sediment retention in encrusting Palythoa spp.—a biological twist to a geological process. Coral Reefs 16:39–46

    Article  Google Scholar 

  • Herberts C (1972) Etude systématique de quelques zoanthaires tempérés et tropicaux. Téthys Suppl 3:69–156

    Google Scholar 

  • Herberts C (1987) Ordre des Zoanthaires. In: Grasse PP, Doumenc D (eds) Traite de Zoologie, Anatomie, Systematique, Biologie Volume 3. Masson, Paris, pp 783–810

    Google Scholar 

  • Hilton MJ, Chou LM (1999) Sediment facies of a low-energy, meso-tidal, fringing reef, Singapore. Sing J Trop Geogr 20:111–130

    Article  Google Scholar 

  • Hirose M, Obuchi M, Hirose E, Reimer JD (2011) Timing of spawning and early development of Palythoa tuberculosa (Anthozoa, Zoantharia, Sphenopidae) in Okinawa, Japan. Biol Bull 220:23–31

    Google Scholar 

  • Hoeksema BW (2012) Extreme morphological plasticity enables a free mode of life in Favia gravida at Ascension Island (South Atlantic). Mar Biodiv 24:289–295

    Article  Google Scholar 

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, Oxford

    Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(417–441):498–520

    Article  Google Scholar 

  • Irei Y, Nozawa Y, Reimer JD (2011) Distribution patterns of five zoanthid species in Okinawa Island, Japan. Zool Stud 50:426–433

    Google Scholar 

  • Jokiel PL (1980) Solar ultraviolet radiation and coral reef epifauna. Science 207:1069–1071

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Env 24:89–99

    Article  CAS  Google Scholar 

  • Kamezaki M, Higa M, Hirose M, Suda S, Reimer JD (2012) Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Mar Biodiv doi. doi:10.1007/s12526-012-0119-2

    Google Scholar 

  • Klaus JS, Budd AF, Heikoop JM, Fouke BW (2007) Environmental controls on corallite morphology in the reef coral Montastrea annularis. Bull Mar Sci 80:233–260

    Google Scholar 

  • Kohler KE, Gill SM (2006) Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Low JKY, Chou LM (1994) Sedimentation rates in Singapore waters. In: Proceedings of the third ASEAN-Australian symposium on living coral resources, vol 2, pp 697–701

  • Mokady Loya OL, Achituv Y, Geffen E, Graur D, Rozenblatt S, Brickner I (1999) Speciation versus phenotypic plasticity in coral inhabiting barnacles: Darwin’s observations in an ecological context. J Mol Evol 49:367–375

    Article  CAS  Google Scholar 

  • Moran GF, Marshall DR, Muller WJ (1981) Phenotypic variation and plasticity in the colonizing species Xanthium strumarium L. (Noogoora Burr). Aust J Biol Sci 34:639–648

    Google Scholar 

  • Muko Kawasaki SL, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239

    Google Scholar 

  • Neo ML, Todd PA (2012) Population density and genetic structure of the giant clams Tridacna crocea and T. squamosa on Singapore’s reefs. Aquat Biol 14:265–275

  • Okamura B (1992) Microhabitat variation and patterns of colony growth and feeding in a marine bryozoans. Ecology 73:1502–1513

    Article  Google Scholar 

  • Otaki JM, Hiyama A, Iwata M, Kudo T (2012) Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol Biol 10:252

    Article  Google Scholar 

  • Ow YX, Todd PA (2010) Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs 29:797–808

    Article  Google Scholar 

  • Pax F (1910) Studien an westindischen Actinien. Zool Jahrb Suppl 11:157–330

    Google Scholar 

  • Pechenik JA (2006) Larval experience and latent effects—metamorphosis is not a new beginning. Int Comp Biol 46:323–333

    Article  Google Scholar 

  • Reimer JD, Todd PA (2009) Preliminary molecular examination of zooxanthellate zoanthids (Hexacorallia: Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. Raff Bull Zool 22:103–120

    Google Scholar 

  • Reimer JD, Ono S, Takishita K, Fujiwara Y, Tsukahara J (2004) Reconsidering Zoanthus spp. diversity: molecular evidence of conspecificity within four previously presumed species. Zool Sci 21:517–525

    Article  CAS  Google Scholar 

  • Reimer JD, Takishita K, Maruyama T (2006a) Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan. Coral Reefs 25:521–527

    Article  Google Scholar 

  • Reimer JD, Ono S, Iwama A, Takishita K, Tsukahara J, Maruyama T (2006b) Morphological and molecular revision of Zoanthus (Anthozoa: Hexacorallia) from southwestern Japan, with descriptions of two new species. Zool Sci 23:261–275

    Article  Google Scholar 

  • Reimer JD, Ono S, Iwama A, Takishita K, Tsukahara J, Maruyama T (2006c) Molecular evidence suggesting species in the zoanthid genera Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zool Sci 23:87–94

    Article  CAS  Google Scholar 

  • Reimer JD, Ono S, Iwama A, Tsukahara J, Maruyama T (2006d) High levels of morphological variation despite close genetic relatedness between Zoanthus aff. vietnamensis and Zoanthus kuroshio (Anthozoa: Hexacorallia). Zool Sci 23:755–761

    Article  CAS  Google Scholar 

  • Reimer JD, Takishita K, Ono S, Maruyama T, Tsukahara J (2006e) Latitudinal and intracolony ITS-rDNA sequence variation in the symbiotic dinoflagellate genus Symbiodinium (Dinophyceae) in Zoanthus sansibaricus (Anthozoa: Hexacorallia). Phycol Res 54:122–132

    Article  CAS  Google Scholar 

  • Reimer JD, Takishita K, Ono S, Maruyama T (2007) Diversity and evolution in the zoanthids genus Palythoa (Cnidaria: Hexacorallia) based on nuclear ITS-rDNA. Coral Reefs 26:399–410

    Article  Google Scholar 

  • Reimer JD, Lin M, Fujii T, Lane DJW, Hoeksema BW (2012) The phylogenetic position of the solitary zoanthid genus Sphenopus (Cnidaria: Hexacorallia). Contrib Zool 81:43–54

    Google Scholar 

  • Relyea RA (2002) Local population differences in phenotypic plasticity: predator-induced changes in wood frog tadpoles. Ecol Monogr 72:77–93

    Article  Google Scholar 

  • Roach DA, Wulff RD (1987) Maternal effects in plants. Ann Rev Ecol Syst 18:209–235

    Article  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2003) Invertebrate zoology: a functional evolutionary approach, 7th edn. Brooks/Cole Thompson Learning, Belmont

    Google Scholar 

  • Ryland JS, Lancaster JE (2003) Revision of methods of separating species of Protopalythoa (Hexacorallia: Zoanthidea) in the tropical West Pacific. Invertebr Syst 17:407–428

    Article  Google Scholar 

  • Ryland JS, Lancaster JE (2004) A review of zoanthids nematocyst types and their population structure. Hydrobiologia 178:179–187

    Article  Google Scholar 

  • Scelfo G (1985) The effects of visible and ultraviolet solar radiation on a UV-absorbing compound and chlorophyll in a Hawaiian zoanthids. In: Proceedings of fifth international coral reef symposium, vol 6, pp 107–112

  • Scheiner SM (1993) Genetics and the evolution of phenotypic plasticity. Ann Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Scheiner SM, Barfield M, Holt RD (2012) The genetics of phenotypic plasticity. XI. Joint evolution of plasticity and dispersal rate. Ecol Evol 2:2027–2039

    Article  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Ann Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Schlichting CD (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–446

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Inc., Massachusetts

    Google Scholar 

  • Schmid B (1985) Clonal growth in grassland perennials: II. Growth form and fine-scale colonizing ability. J Ecol 73:809–818

    Article  Google Scholar 

  • Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Glob Change Biol 2:527–545

    Article  Google Scholar 

  • Shiroma E, Reimer JD (2010) Investigations into the reproductive patterns, ecology and morphology in the zoanthid genus Palythoa (Cnidaria: Anthozoa: Hexacorallia) in Okinawa, Japan. Zool Stud 49:182–194

  • Sinniger F, Reimer JD, Pawlowski J (2008) Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zool Sci 25:1253–1260

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–445

    Article  Google Scholar 

  • Swan SB (1971) Coastal geomorphology in a humid tropical low energy environment: the islands of Singapore. J Trop Geogr 33:43–61

    Google Scholar 

  • Tay YC, Todd PA, Per SR, Chou LM (2012) Simulating the transport of coral larvae among the Southern Islands of Singapore. Aquat Biol 15:283–297

    Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Nat Acad Sci USA 101:13531–13535

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Biol Ecol 263:211–225

    Article  Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337

    Article  Google Scholar 

  • Todd PA, Sanderson PG, Chou LM (2001) Morphological variation in the polyps of the scleractinian coral Favia speciosa (Dana) around Singapore. Hydrobiologia 444:227–235

    Article  Google Scholar 

  • Todd PA, Sidle RC, Chou LM (2002a) Plastic corals from Singapore 1. Coral Reefs 21:391–392

    Google Scholar 

  • Todd PA, Sidle RC, Chou LM (2002b) Plastic corals from Singapore 2. Coral Reefs 21:407–408

    Google Scholar 

  • Todd PA, Ladle RJ, Lewin-Koh NJI, Chou LM (2004a) Genotype × environment interactions in transplanted clones of the massive corals Favia speciosa and Diploastrea heliopora. Mar Ecol Prog Ser 271:167–182

    Article  Google Scholar 

  • Todd PA, Ladle RJ, Lewin-Koh NJI, Chou LM (2004b) Flesh or bone? Quantifying small-scale coral morphology using with-tissue and without-tissue techniques. Mar Biol 145:323–328

    Article  Google Scholar 

  • Todd PA, Sidle RC, Lewin-Koh NJI (2004c) An aquarium experiment for identifying the physical factors inducing morphological change in two massive scleractinian corals. J Exp Mar Biol Ecol 299:97–113

    Article  Google Scholar 

  • Todd PA, Ong X, Chou LM (2010) Impacts of pollution on marine life in Southeast Asia. Biodiv Conserv 19:1063–1082

    Article  Google Scholar 

  • Trexler JC, Travis J (1990) Phenotypic plasticity in the sailfin mollie, Poecilia latipinna (Pisces: Poeciliidae). II. Field experiments. Evolution 44:143–156

    Article  Google Scholar 

  • Trexler JC, Travis J, Trexler M (1990) Phenotypic plasticity in the sailfin mollie, Poecilia latipinna (Pisces: Poeciliidae). II. Laboratory experiment. Evolution 44:157–167

    Article  Google Scholar 

  • Trussell GC (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54:151–166

    CAS  Google Scholar 

  • van Tienderen PH (1991) Evolution of generalists and specialist in spatially heterogeneous environments. Evolution 45:1317–1331

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Via S (1993) Adaptive phenotypic plasticity: target or byproduct of selection in a variable environment? Am Nat 142:352–365

    Article  CAS  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–523

    Article  Google Scholar 

  • Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. In: Proceedings of the 5th international coral reef congress, vol 4, pp 107–112

Download references

Acknowledgments

Many thanks to Sam Lai and Rosa Poquita for field assistance and the team from the Experimental Marine Ecology Laboratory, NUS, Singapore, for advice and ideas. We also thank the two anonymous reviewers for their comments and suggestions. This research was carried out as part of Singapore Delft Water Alliance’s Marine & Coastal Research Programme (Theme 2): ‘Dredging and infrastructure development near critical marine ecosystems’ (R-264-001-001-272) with additional support from the NParks-funded project: “Impacts of ship-wake-induced sediment resuspension on coral reefs and sea grass in Singapore.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Todd.

Additional information

Communicated by R. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, C.W., Reimer, J.D. & Todd, P.A. Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa . Mar Biol 160, 1053–1064 (2013). https://doi.org/10.1007/s00227-012-2158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2158-4

Keywords

Navigation