Skip to main content

Advertisement

Log in

Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Warmer, more acidic water resulting from greenhouse gas emissions could influence ecosystem processes like bioerosion of calcifying organisms. Based on summer-maxima values (temperature = 26 °C; pH = 8.1) at a collection site in New York (40°56″ N, 72°30″ W), explants of the boring sponge Cliona celata Grant, 1826 were grown for 133 days on scallop shells in seawater ranging from current values to one scenario predicted for the year 2100 (T = 31 °C; pH = 7.8). High water temperature had little effect on sponge growth, survival, or boring rates. Lower pH slightly reduced sponge survival, while greatly influencing shell boring. At pH = 7.8, sponges bored twice the number of papillar holes and removed two times more shell weight than at pH = 8.1. Greater erosion resulted in weaker scallop shells. This study suggests that lower seawater pH may increase boring rates of C. celata in shellfish, with potentially severe implications for wild and farmed shellfish populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson AJ, Mackenzie FT (2012) Revisiting four scientific debates in ocean acidification research. Biogeosciences 9:893–905

    Article  CAS  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Nat Acad Sci USA 105:17422–17446

    Google Scholar 

  • Bergquist PR (1978) Sponges. University of California Press, Berkeley

    Google Scholar 

  • Breuer E, Sañudo-Wilhelmy SA, Aller RC (1999) Trace metals and dissolved organic carbon in an estuary with restricted river flow and a brown tide bloom. Estuaries 22:603–615

    Article  CAS  Google Scholar 

  • Carballo JL, Naranjo SA, Garcia-Gómez JC (1996) Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (southern Iberian Peninsula). Mar Ecol Prog Ser 135:109–122

    Article  Google Scholar 

  • Carver CE, Thériault I, Mallet AL (2010) Infection of cultured eastern oysters Crassostrea virginica by the boring sponge Cliona celata, with emphasis on sponge life history and mitigation strategies. J Shellfish Res 29:905–915

    Article  Google Scholar 

  • Cobb WR (1975) Fine structural features of destruction of calcareous substrata by the burrowing sponge Cliona celata. Trans Am Microsc Soc 94:197–202

    Article  Google Scholar 

  • Daume S, Fromont J, Hart A (2009) Management of bioeroding sponges in wild stocks of Pinctada maxima in Western Australia. Fisheries research report No. 196. Department of fisheries, Western Australia

  • Daume S, Fromont J, Parker F, Davidson M, Murphy D, Hart A (2010) Quantifying sponge erosions in Western Australian pearl oyster shells. Aquac Res 41:260–267

    Article  Google Scholar 

  • de Nys R, Ison O (2008) Biofouling. In: Southgate P, Lucas J (eds) The pearl oyster. Elsevier, Oxford, pp 527–551

    Chapter  Google Scholar 

  • de Paula TS, Zilberberg C, Hajdu E, Lôbo-Hajdu G (2012) Morphology and molecules on opposite sides of the diversity gradient: four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol Phylogenet Evol 62:529–541

    Article  Google Scholar 

  • Duckworth AR, Battershill CN (2001) Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). NZ J Mar Freshwat Res 35:935–949

    Article  Google Scholar 

  • Duckworth AR, Battershill CN (2003) Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217:139–156

    Article  CAS  Google Scholar 

  • Duckworth AR, West L, Vansach T, Stubler A, Hardt M (2012) Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Mar Ecol Prog Ser 462:67–77

    Article  Google Scholar 

  • Emson RH (1966) The reactions of the sponge Cliona celata to applied stimuli. Comp Biochem Physiol 18:805–827

    Article  CAS  Google Scholar 

  • Evans JW (1969) Borers in the shell of the sea scallop, Placopecten magellanicus. Am Zool 9:775–782

    Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fay CW, Neves RJ, Pardue GP (1983) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic)—bay scallop. U.S. fish and wildlife service, division of biological services, FWS/OBS-82/11.12. US Army Corp of Engineers, TR EL-82-4

  • Fell PE, Parry EH, Balsamo AM (1984) The life histories of sponges in the Mystic and Thames estuaries (Connecticut), with emphasis on larval settlement and post larval reproduction. J Exp Mar Biol Ecol 78:127–141

    Article  Google Scholar 

  • Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death on coral reefs. Chapman and Hall, New York, pp 68–95

    Chapter  Google Scholar 

  • Grant RE (1826) Notice of a new zoophyte (Cliona celata Gr.) from the firth of forth. Edinb New Philos J 1:78–81

    Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134:320–342

    Article  CAS  Google Scholar 

  • Hartman WD (1958) Natural history of the marine sponges of southern New England. Bull Peabody Mus Nat Hist 12:1–155

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hoeksema BW (1983) Excavation patterns and spiculae dimensions of the boring sponge Cliona celata from the SW Netherlands. Senckenb Marit 15:55–85

    Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Kaehler S, McQuaid CD (1999) Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna. Mar Biol 135:497–503

    Article  Google Scholar 

  • Kiessling W, Simpson C (2011) On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Change Biol 17:56–67

    Article  Google Scholar 

  • Koopmans M, Wijffels RH (2008) Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida). Mar Biotechnol 10:502–510

    Article  CAS  Google Scholar 

  • Maldonado M, Giraud K, Carmona C (2008) Effects of sediment on the survival of asexually produced sponge recruits. Mar Biol 154:631–641

    Article  CAS  Google Scholar 

  • Mallela J, Perry CT (2007) Calcium carbonate budgets for two coral reefs affected by different runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26:129–145

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nicol WL, Reisman HM (1976) Ecology of the boring sponge (Cliona celata) at Gardiner’s Island, New York. Chesap Sci 17:1–7

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Pawlik JR, McMurray SE, Henkel TP (2007) Abiotic factors control sponge ecology in Florida mangroves. Mar Ecol Prog Ser 339:93–98

    Article  Google Scholar 

  • Piscitelli M, Corriero G, Gaino E, Uriz MJ (2011) Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr Biol 130:1–10

    Article  Google Scholar 

  • Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319

    Article  CAS  Google Scholar 

  • Pomponi SA, Meritt DW (1990) Distribution and life history of the boring sponge Cliona truitti in the upper Chesapeake bay. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, D.C., pp 384–390

    Google Scholar 

  • Przeslawski R, Ahyong S, Byrne M, Wörheide G, Hutchings PAT (2008) Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Glob Change Biol 14:2773–2795

    Article  Google Scholar 

  • Reis MAC, Ledo ZMAN (2000) Bioerosion rate of the sponge Cliona celata (Grant 1826) from reefs in turbid waters, north Bahia, Brazil. In: Moosa MK, Soemodihardjo S, Soegiarto A, Romimohtarto K, Nontji A, Soekarno, Suharsono (eds) Proceedings 9th international coral reef symposium, Bali, Indonesia Vol. 1, pp 273–278

  • Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Rosell D, Uriz MJ (1992) Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar Biol 114:503–507

    Article  Google Scholar 

  • Rosell D, Uriz MJ, Martin D (1999) Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea). J Mar Biol Assoc UK 79:409–413

    Article  Google Scholar 

  • Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geologica Hispanica 37:61–72

    Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162

    Article  Google Scholar 

  • Schönberg CHL (2002) Substrate effects on the bioeroding sponge Cliona orientalis. 1. Bioerosion rates. P.S.Z.N. Mar Ecol 23:313–326

    Article  Google Scholar 

  • Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202

    Chapter  Google Scholar 

  • Schönberg CHL, Ortiz JC (2008) Is sponge bioerosion increasing? In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, Florida. Vol 1, pp 527–530

  • Simpson TL (1968) The biology of the marine sponge Microciona prolifera (Ellis and Solander) II. Temperature-related, annual changes in functional and reproductive elements with a description of larval metamorphosis. J Exp Mar Biol Ecol 2:252–277

    Article  Google Scholar 

  • Stefaniak LM, McAtee J, Shulman MJ (2005) The costs of being bored: effects of a clionid sponge on the gastropod Littorina littorea (L). J Exp Mar Biol Ecol 327:103–114

    Article  Google Scholar 

  • Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Nat Acad Sci USA 107:17246–17251

    Article  CAS  Google Scholar 

  • Turner JT (1982) The annual cycle of zooplankton in a long Island estuary. Estuaries 5:261–274

    Article  Google Scholar 

  • Turon X, Tarjuelo I, Uriz MJ (1998) Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Funct Ecol 12:631–639

    Article  Google Scholar 

  • Van Soest RWM (2011) Cliona celata Grant, 1826. In: Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schönberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M (eds) World porifera database. Available at http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=134121

  • Warburton EF (1958) The manner in which the sponge Cliona bores in calcareous objects. Can J Zool 36:555–562

    Article  Google Scholar 

  • Wells HW, Wells MJ, Gray IE (1964) Ecology of sponges in Hatteras harbor, North Carolina. Ecology 45:752–766

    Article  Google Scholar 

  • Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schönberg CHL, Breeuwer JAJ, van Soest RWM (2010) Molecular evidence of cryptic speciation in the ‘‘cosmopolitan’’ excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank Tom Behling for experimental help and Shirley Pomponi, Brad Furman, Amber Stubler, John Carroll and anonymous reviewers for their helpful comments. This study was partially funded by Blue Ocean Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Duckworth.

Additional information

Communicated by P. Kraufvelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duckworth, A.R., Peterson, B.J. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar Biol 160, 27–35 (2013). https://doi.org/10.1007/s00227-012-2053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2053-z

Keywords

Navigation