Skip to main content
Log in

Temporal and spatial variation in the δ15N and δ13C values of fish and squid from Alaskan waters

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

To test the hypothesis that stable isotope ratios from marine organisms vary, the δ15N and δ13C values from fish and squid collected in Alaskan waters were measured across years (1997, 2000, and 2005), seasons, geographic locations, and different size/age classes, and between muscle tissue and whole animals. Temporal, geographic, and ontogenetic differences in stable isotope ratios ranged from 0.5–2.5‰ (δ15N) to 0.5–2.0‰ (δ13C). Twenty-one comparisons of stable isotope values between whole organisms and muscle tissue revealed only four small differences each for δ15N and δ13C, making costly and space prohibitive collection of whole animals unnecessary. The data from this study indicate that significant variations of stable isotope values from animals in marine systems necessitates collection of prey and predator tissues from the same time and place for best interpretation of stable isotope analysis in foraging ecology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albers W, Anderson P (1985) Diet of Pacific cod, Gadus macrocephalus, and predation on the northern pink shrimp, Pandalus borealis, in Pavlof Bay, Alaska. Fish Bull (Seattle) 83(4):601–610

    Google Scholar 

  • Antonelis GA, Sinclair EH, Ream RR, Robson BW (1997) Inter-island variation in the diet of female northern fur seals (Callorhinus ursinus) in the Bering Sea. J Zool (Lond) 242:435–451

    Article  Google Scholar 

  • Baduini C, Hunt G Jr, IPinchuk A, Coyle K (2006) Patterns in diet reveal foraging site fidelity of short-tailed shearwaters in the southeastern Bering Sea. Mar Ecol Prog Ser 320:279–292

    Article  CAS  Google Scholar 

  • Bailey K, Powers D, Quattro J, Villa R, Nishimura A, Traynor J, Walters G (1999a) Population ecology and structural dynamics of walleye pollock, Theragra chalcogramma. In: Loughlin T, Ohtani K (eds) Dynamics of the Bering Sea. Alaska Sea Grant Press, University of Alaska, Fairbanks

    Google Scholar 

  • Bailey K, Quinn T II, Bentzen P, Grant W (1999b) Population structure and dynamics of walleye pollock, Theragra chalcogramma. Adv Mar Biol 37:179–255

    Article  Google Scholar 

  • Bailey K, Abookire A, Duffy-Anderson J (2008) Ocean transport paths for the early life history stages of offshore-spawning flatfishes: a case study in the Gulf of Alaska. Fish Fish 9:44–66

    Article  Google Scholar 

  • Barnes C, Jennings S, Polumin N, Lancaster J (2008) The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia (Berl) 155:227–235

    Article  Google Scholar 

  • Barnes C, Jennings S, Barry J (2009) Environmental correlates of large-scale spatial variation in the δ13C of marine animals. Estuar Coast Shelf Sci 81:368–374

    Article  Google Scholar 

  • Beamish R, Leask K, Ivanov O, Balanov A, Orlov A, Sinclair E (1999) The ecology, distribution, and abundance of midwater fishes of the subarctic Pacific gyres. Prog Oceanogr 43:399–442

    Article  Google Scholar 

  • Bode A, Carrera P, Lens S (2003) The pelagic foodweb in the upwelling ecosystem of Galicia (NW Spain) during spring: natural abundance of stable carbon and nitrogen isotopes. ICES J Mar Sci 60:11–22

    Article  CAS  Google Scholar 

  • Bosley K, Witting D, Chambers R, Wainwright S (2002) Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar Ecol Prog Ser 236:233–240

    Article  Google Scholar 

  • Bowen G (2010) Isoscapes: spatial pattern in isotopic biogeochemistry. Annu Rev Earth Planet Sci 38:61–187

    Article  Google Scholar 

  • Brodeur R, Livingston P (1988) Food habits and diet overlap of various eastern Bering Sea fishes. vol NOAA Technical Memo. NOAA Technical Memo NMFS/NWC 127

  • Brodeur R, Wilson M, Walters G (1999) Forage fishes in the Bering Sea: distribution, species associations, and biomass trends. In: Loughlin T, Ohtani K (eds) Dynamics of the Bering Sea. Alaska Sea Grant Press, University of Alaska, Fairbanks

    Google Scholar 

  • Brodeur R, Wilson M, Ciannelli L, Doyle M, Napp J (2002) Interannual and regional variability in distribution and ecology of juvenile pollock and their prey in frontal structures of the Bering Sea. Deep-Sea Res Part II Top Stud Oceanogr 49:6051–6067

    Article  Google Scholar 

  • Buchheister A, Latour R (2010) Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Can J Fish Aquat Sci 67:445–461

    Article  CAS  Google Scholar 

  • Burkhardt S, Riebesell U, Zondervan I (1999) Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochim Cosmochim Acta 63:3729–3741

    Article  CAS  Google Scholar 

  • Church M, Ebersole J, Rensmeyer K, Couture R, Barrows F, Noakes D (2009) Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis. Can J Fish Aquat Sci 66:1–5

    Article  CAS  Google Scholar 

  • Ciannelli L, Bailey K, Chan K, Stenseth N (2007) Phenological and geographical patterns of walleye pollock (Theragra chalcogramma) spawning in the western Gulf of Alaska. Can J Fish Aquat Sci 64:713–722

    Article  Google Scholar 

  • Conners M, Munro P (2008) Effects of commercial fishing on local abundance of Pacific cod (Gadus macrocephalus) in the Bering Sea. Fish Bull (Seattle) 106:281–292

    Google Scholar 

  • Coonradt (2002) The southeast Alaska Pacific cod fishery (trans: Fisheries DoC). Alaska Department of Fish and Game, Regional Information Report No. 1J02-10, Juneau, Alaska

  • Cullen J, Rosenthal Y, Falkowski P (2001) The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnol Oceanogr 46(4):996–998

    Article  Google Scholar 

  • Cunningham K, Canino M, Spies I, Hauser L (2009) Genetic isolation by distance and localied fjord population structure in Pacific cod (Gadus macrocephalus): limited effective dispersal in the northeastern Pacific Ocean. Can J Fish Aquat Sci 66:153–166

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Descolas-Gros C, Fontugne M (1990) Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Plant Cell Environ 13:207–218

    Article  CAS  Google Scholar 

  • Dobush G, Ankney C, Krementz D (1985) The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Can J Zool 63:1917–1920

    Article  CAS  Google Scholar 

  • Doucette J, Wissel B, Somers C (2010) Effects of lipid extraction and lipid normalization on stable carbon and nitrogen isotope ratios in double-crested cormorants: implications for food web studies. Waterbirds 33(3):273–284

    Article  Google Scholar 

  • France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  • Graham B, Fry B, Popp B, Olson R, Allain V, Galvan-Magana F (2008) Pelagic marine isoscapes: determining residency and net movements of top predators in the equatorial Pacific Ocean using bulk and compound-specific stable isotope analysis. Paper presented at the isoscapes 2008: isotope mapping workshop, Santa Barbara, CA

  • Graham B, Koch P, Newsome S, McMahon K, Aurioles D (2010) Using isoscapes to trace movements and foraging behavior of top predators in oceanic ecosystems. In: West J, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer Science and Business Media, Berlin

  • Gustafson R, Lenarz W, McCain B, Schmitt C, Grant W, Builder T, Methot R (2000) Status review of Pacific hake, Pacific cod, and walleye pollock from Puget Sound, Washington. U.S. Department of Commerce, NOAA Technical Memo NMFS-NWFSC-44, Seattle, WA

  • Herman D, Burrows D, Wade P, Durban J, Matkin C, LeDuc R, Barrett-Lennard L, Krahn M (2005) Feeding ecology of eastern North Pacific killer whales Orcinus orca from fatty acid, stable isotope, and organochlorine analyses of blubber biopsies. Mar Ecol Prog Ser 302:275–291

    Article  Google Scholar 

  • Hinckley S (1987) The reproductive biology of walleye pollock, Theragra chalcogramma, in the Bering Sea, with reference to spawning stock structure. Fish Bull (Seattle) 85(3):481–498

    Google Scholar 

  • Hinckley S, Hermann A, Mier K, Megrey B (2001) Importance of spawning location and timing to successful transport to nursery areas: a simulation study of Gulf of Alaska walleye pollock. ICES J Mar Sci 58:1042–1052

    Article  Google Scholar 

  • Hirons AC, Schell DM, Springer AM (1998) Isotope ratios in Steller sea lions, northern fur seals, and harbor seals of the Bering Sea and western Gulf of Alaska: trophic implications. In: Schell D (ed) Testing conceptual models of marine mammal trophic dynamics using carbon and nitrogen stable isotope ratios, vol OCS Study MMS98–0031. U.S. Dept. of Interior, Minerals Management Service, Anchorage, pp 31–54

    Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA (2005) Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers Distrib 11:157–164

    Article  Google Scholar 

  • Hobson K, Sinclair ES, York AE, Thomason JR, Merrick RL (2004) Retrospective isotopic analyses of Steller sea lion tooth annuli and seabird feathers: a cross-taxa approach to investigating regime and dietary shifts in the Gulf of Alaska. Mar Mamm Sci 20(3):621–638

    Article  Google Scholar 

  • Incze L, Macgill Hynde C, Kim S, Strickland R (1988) Walleye pollock, Theragra chalcogramma, the eastern Bering Sea. In: Wilimovsky N, Incze L, Westrheim S (eds) Species synopses: life histories of selected fish and shellfish of the Northeast Pacific and Bering Sea. Washington Sea Grant Program and Fisheries Research Institute, University of Washington, Seattle, pp 55–69

    Google Scholar 

  • Jaeger A, Lecomte V, Weimerskirch H, Richard P, Cherel Y (2010) Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun Mass Spectrom 24:3456–3460

    Article  CAS  Google Scholar 

  • Jennings S, Warr K (2003) Environmental correlates of large-scale spatial variation in the δ15N of marine animals. Mar Biol (Berl) 142:1131–1140

    Article  Google Scholar 

  • Karnovsky N, Hobson K, Iverson A, Hunt G Jr (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299

    Article  Google Scholar 

  • Knoth B, Laurel B (2009) Dietary overlap and competitive interactions between juvenile gadids in coastal Alaska. In: Alaska Marine Science Symposium, Anchorage, AK

  • Kurle CM (2002) Stable-isotope ratios of blood components from captive northern fur seals (Callorhinus ursinus) and their diet: applications for studying the foraging ecology of wild otariids. Can J Zool 80:902–909

    Article  Google Scholar 

  • Kurle CM (2009) Interpreting temporal variation in omnivore foraging ecology via stable isotope modelling. Funct Ecol 23:733–744

    Article  Google Scholar 

  • Kurle CM, Gudmundson CJ (2007) Regional differences in foraging of young-of-the-year Steller sea lions Eumetopias jubatus in Alaska: stable carbon and nitrogen isotope ratios in blood. Mar Ecol Prog Ser 342:303–310

    Article  Google Scholar 

  • Kurle CM, Worthy GAJ (2001) Stable isotope assessment of temporal and geographic differences in feeding ecology of northern fur seals (Callorhinus ursinus) and their prey. Oecologia 126:254–265

    Article  Google Scholar 

  • Kurle CM, Worthy GAJ (2002) Stable nitrogen and carbon isotope ratios in multiple tissues of the northern fur seal Callorhinus ursinus: implications for dietary and migratory reconstructions. Mar Ecol Prog Ser 236:289–300

    Article  Google Scholar 

  • Logan J, Jardine T, Miller T, Bunn S, Cunjak R, Lutcavage M (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    Article  Google Scholar 

  • MacAvoy S, Macko S, Arneson L (2005) Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Can J Zool 83:631–641

    Article  CAS  Google Scholar 

  • MacNeil M, Drouillard K, Fisk A (2006) Variable uptake and elimination of stable nitrogen isotopes between tissue in fish. Can J Fish Aquat Sci 63:345–353

    Article  CAS  Google Scholar 

  • McConnaughey T, McRoy C (1979) Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol (Berl) 53:257–262

    Article  CAS  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Mito K, Nishimura A, Yanagimoto T (1999) Ecology of groundfishes in the Eastern Bering Sea, with an emphasis on food habits. In: Loughlin T, Ohtani K (eds) Dynamics of the Bering Sea. University of Alaska Sea Grant, AK-SG-99–03, Fairbanks, p 838

    Google Scholar 

  • Nakatsuka T, Handa N, Wada E, Wong C (1992) The dynamic changes of stable isotopic ratios of nitrogen anarbon in suspended and sedimented particulate organic matter during a phytoplankton bloom. J Mar Res 50:267–296

    Article  CAS  Google Scholar 

  • Newsome S, Etnier M, Kurle C, Waldbauer J, Chamberlain C, Koch P (2007) Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: isotopic analysis of northern fur seal teeth. Mar Ecol Prog Ser 332:211–224

    Article  CAS  Google Scholar 

  • Newsome S, Clementz M, Koch P (2010) Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mamm Sci 26(3):509–572

    CAS  Google Scholar 

  • O’Reilly P, Canino M, Bailey K, Bentzen P (2004) Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13:1799–1814

    Article  Google Scholar 

  • Paul A, Paul J, Brown E (1996) Ovarian energy content of Pacific herring from Prince William Sound, Alaska. Alsk Fish Res Bull 3:103–111

    Google Scholar 

  • Perga M, Gerdeaux D (2005) ‘Are fish what they eat’ all year round? Oecologia (Berl) 144:598–606

    Article  CAS  Google Scholar 

  • Popp B, Laws E, Bidigare R, Dore J, Hanson K, Wakeham S (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62(1):69–77

    Article  CAS  Google Scholar 

  • Post D, Layman C, Arrignton D, Takimoto G, Quattrochi J, Montana C (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia (Berl) 152:179–189

    Article  Google Scholar 

  • Revill A, Young J, Lansdell M (2009) Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Mar Biol 156:1241–1253

    Article  Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19(5):256–263

    Article  Google Scholar 

  • Schell D (2000) Declining carrying capacity in the Bering Sea: isotopic evidence from whale baleen. Limnol Oceanogr 45:459–462

    Article  CAS  Google Scholar 

  • Schell D (2001) Carbon isotope ratio variations in Bering Sea biota: the role of anthropogenic carbon dioxide. Limnol Oceanogr 46(4):999–1000

    Article  Google Scholar 

  • Schell D, Barnett B, Vinette K (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi, and Beaufort Seas. Mar Ecol Prog Ser 162:11–23

    Article  CAS  Google Scholar 

  • Schlechtriem C, Fochen U, Becker K (2003) Effect of different lipid extraction methods on δ13C of lipid and lipid-free fractions of fish and different fish feeds. Isot Environ Health Stud 39(2):135–140

    Article  CAS  Google Scholar 

  • Shi Y, Gunderson D, Munro P, Urban J (2007) Estimating movement rates of Pacific cod (Gadus macrocephalus) in the Bering Sea and the Gulf of Alaska using mark-recapture methods. North Pacific Research Board Final Report 620

  • Shimada A, Kimura D (1994) Seasonal movements of Pacific cod, Gadus macrocephalus, in the eastern Bering Sea and adjacent waters based on tag-recapture data. Fish Bull (Seattle) 92:800–816

    Google Scholar 

  • Sinclair EH, Zeppelin TK (2002) Seasonal and spatial differences in diet in the western stock of Steller sea lions (Eumetopias jubatus). J Mammal 83(4):973–990

    Article  Google Scholar 

  • Sinclair EH, Loughlin TR, Pearcy W (1994) Prey selection by northern fur seals (Callorhinus ursinus) in the eastern Bering Sea. Fish Bull 92:144–156

    Google Scholar 

  • Sinclair EH, Moore SE, Friday N, Zeppelin TK, Waite J (2005) Do patterns of Steller sea lion (Eumetopias jubatus) diet, population trend and cetacean occurrence reflect oceanographic domains from the Alaska Peninsula to the central Aleutian Islands? Fish Oceanogr 14(Suppl 1):223–242

    Article  Google Scholar 

  • Sinclair E, Vliestra L, Johnson D, Zeppelin T, Byrd G, Springer A, Ream R, Hunt GJ (2008) Patterns of prey use among fur seals and seabirds in the Pribilof Islands. Deep-Sea Res Part II Top Stud Oceanogr 55(16–17):1897–1918

    Article  Google Scholar 

  • Springer A, Piatt J, Shuntov V, Van Vliet G, Vladimirov V, Kuzin A, Perlov A (1999) Marine birds and mammals of the Pacific subarctic gyres. Prog Oceanogr 43:443–487

    Article  Google Scholar 

  • Stark J (2008) Age and length-at-maturity of female arrowtooth flounder (Atheresthes stomias) in the Gulf of Alaska. Fish Bull 106:328–333

    Google Scholar 

  • Sweeting C, Jennings S, Polunin N (2005) Variance in isotopic signatures as a dexcriptor of tissue turnover and degree of omnivory. Funct Ecol 19(5):777–784

    Article  Google Scholar 

  • Sweeting C, Polunin N, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 20:595–601

    Article  CAS  Google Scholar 

  • Tarboush R, MacAvoy S, Macko S, Connaughton V (2006) Contribution of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio. Can J Zool 84:1453–1460

    Article  CAS  Google Scholar 

  • Tortell P, Rau G, Morel F (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45:1485–1500

    Article  CAS  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  Google Scholar 

  • Weidel B, Carpenter S, Kitchell J, Vander Zanden M (2011) Rates and components of carbon turnover in fish muscle: insights form bioenergentics models and a whole-late 13C addition. Can J Fish Aquat Sci 68:387–399

    Article  CAS  Google Scholar 

  • Wespestad V, Fritz L, Ingraham W, Megrey B (2000) On relationships between cannibalism, climate variability, physical transport, and recruitment success of Bering Sea walleye pollock (Theragra chalcogramma). ICES J Mar Sci 57:272–278

    Article  Google Scholar 

  • Yang M, Livingston P (1986) Food habits and diet overlap of two congeneric species, Atheresthes stomias, and Atheresthes evermanni, in the Eastern Bering Sea. Fish Bull 82(3):615–623

    Google Scholar 

Download references

Acknowledgments

Thank you to the Alaska Fisheries Science Center (AFSC) for collecting fish and squid on FOCI and RACE Division cruises in the Bering Sea, Gulf of Alaska, and Shelikof Strait in 2000. We also greatly appreciate the vessel and scientific crews on the AFSC eastern Bering Sea and Gulf of Alaska bottom trawl surveys for their efforts to provide tissue samples from 2005. Thank you to D. Brown, J. Buzitis, K. Call, D. Ernest, and K. Shearer for access to equipment for sample preparation. Thanks to T. Loughlin and T. Gelatt for support. Thank you to G. Duker, T. Gelatt, J. Lee, O. Ormseth, and three anonymous reviewers for comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn M. Kurle.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 26.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurle, C.M., Sinclair, E.H., Edwards, A.E. et al. Temporal and spatial variation in the δ15N and δ13C values of fish and squid from Alaskan waters. Mar Biol 158, 2389–2404 (2011). https://doi.org/10.1007/s00227-011-1741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1741-4

Keywords

Navigation