Skip to main content
Log in

Small-scale genetic structure in the sea palm Postelsia palmaeformis Ruprecht (Phaeophyceae)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Documenting the scale of movement among populations is an important challenge for marine ecology. Using nine microsatellite markers, evidence of genetic structure in a marine kelp, the sea palm Postelsia palmaeformis Ruprecht, was examined in the vicinity of Cape Flattery, Washington state, USA (48° 24′ N, 124°44′ W). Genetic clustering analysis implemented without reference to geographic structure strongly suggested that a number of distinct genetic clusters existed among the 245 plants sampled in August in the years 1997–2001. Subsequent analysis showed that clustering was associated with geographically defined populations both among (km scale) and within (m scale) sampling sites. F st analysis of geographically defined populations revealed significant genetic differentiation among populations of plants as little as 5 m apart, evidence of genetic structuring at even smaller scales, and a sharp increase in F st across populations separated by up to 23 m. F st values were also high and approximately unchanging (F st=0.470) for populations separated by greater distances (up to 11 km), consistent with a scenario of rare dispersal by detached, floating plants carried by variable currents. The results corroborate natural history observations suggesting that P. palmaeformis has extremely short (1–3 m) spore dispersal distances, and indicate that the dynamics of sea palm populations are more affected by local processes than recruitment from distant populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott IA, Hollenberg GJ (1976) Marine algae of California. Stanford University Press, Stanford

    Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution. Sinauer Press, Sunderland

    Google Scholar 

  • Billot C, Engel CR, Rousvoal S, Kloareg B, Valero M (2003) Current patterns, habitat discontinuities and population genetic structure: the case of the kelp Laminaria digitata in the English Channel. Mar Ecol Prog Ser 253:111–121

    Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  PubMed  CAS  Google Scholar 

  • Coleman MA, Brawley SH (2004) Spatial and temporal variability in dispersal and population genetic structure in a marine metapopulation. Abstract presented at the Ecological Society of America annual meeting, Portland, Oregon http://www.abstracts.co.allenpress.com/pweb/esa2004/document/?ID=35254

  • Coleman MA, Brawley SH (2005) Are life history characteristics good predictors of genetic diversity and structure? A case study of the intertidal alga Fucus spiralis (Heterokontophyta; Phaeophyceae). J Phycol 41:753–762

    Article  Google Scholar 

  • Colin PL (2003) Larvae retention: genes or oceanography? Science 300:1657

    Article  PubMed  CAS  Google Scholar 

  • Coyer JA, Olsen JL, Stam WT (1997) Genetic variability and spatial separation in the sea palm kelp Postelsia palmaeformis (Phaeophyceae) as assessed with M13 fingerprints and RAPDS. J Phycol 33:561–568

    Article  CAS  Google Scholar 

  • Dayton PK (1973) Dispersion, dispersal. And persistence of the annual intertidal alga, Postelsia palmaeformis Ruprecht. Ecology 54:433–438

    Article  Google Scholar 

  • Duffy JE (1993) Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential. Mar Biol 116:459–470

    Article  Google Scholar 

  • Deysher L, Norton TA (1982) Dispersal and colonisation in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195

    Article  Google Scholar 

  • Engel CR, Wattier R, Destombe C, Valero M (1999) Performance of non-motile male gametes in the sea: analysis of paternity and fertilization success in a natural population of a red seaweed, Glacilaria gracilis. Proc R Soc Lond B 266:1879–1886

    Article  Google Scholar 

  • Fain SR, Druehl LD, Baillie DL (1988) Repeat and single copy chloroplast DNA. J Phycol 24:292–302

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Grosberg R, Cunningham CW (2001) Genetic structure in the sea: from populations to communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, pp 61–84

    Google Scholar 

  • Grosberg RK (1991) Sperm-mediated gene flow and the genetic structure of a population of the colonial ascidian Botryllus schlosseri. Evolution 45:130–142

    Article  Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Hellberg ME (1994) Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854

    Article  Google Scholar 

  • Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175

    Article  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Kain JM (1964) Aspects of the biology of Laminaria hyperborea. III. Survival and growth of gametophytes. J Mar Biol Assoc UK 44:415–433

    Article  Google Scholar 

  • Kalvass PE (1994) The effect of different harvest methods on sea palm (Postelsia palmaeformis) sporophyll growth. California Fish Game 80:57–67

    Google Scholar 

  • Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP, Sole-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422

    Article  Google Scholar 

  • Kusumo HT, Druehl LD (2000) Variability over space and time in the genetic structure of the winged kelp Alaria marginata. Mar Biol 136:397–409

    Article  CAS  Google Scholar 

  • Kusumo HT, Pfister CA, Wootton JT (2004) Dominant (AFLP) and codominant (microsatellite) markers for the kelp Postelsia palmaeformis (Laminariales). Mol Ecol Notes 4:372–375

    Article  CAS  Google Scholar 

  • Kyle CJ, Boulding EG (2000) Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol 137:835–845

    Article  CAS  Google Scholar 

  • Leigh EG Jr, Paine RT, Quinn JF, Suchanek TH (1987) Wave energy and intertidal productivity. Proc Natl Acad Sci USA 84:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Levinton JS, Suchanek TH (1979) Geographic variation, niche breadth, and genetic differentiation at different geographic scales in the mussels Mytilus californianus and Mytilus edulis. Mar Biol 49:363–376

    Article  Google Scholar 

  • Lindstrom SC, Olsen JL, Stam WT (1997) Postglacial recolonization and the biogeography of Palmaria mollis (Rhodophyta) along the Northeast Pacific coast. Can J Bot 75:1887–1896

    Google Scholar 

  • Martínez EA, Cárdenas L, Pinto R (2003) Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/83. J Phycol 39:504–508

    Article  Google Scholar 

  • Lu TT, Williams SL (1994) Genetic diversity and genetic structure in the brown alga Halidrys dioica (Fucales: Cystoseiraceae) in Southern California. Mar Biol 121:363–371

    Article  Google Scholar 

  • McFadden CS (1997) Contributions of sexual and asexual reproduction to population structure in the clonal soft coral, Alcyonium rudyi. Evolution 51:112–126

    Article  Google Scholar 

  • Olson RR (1985) The consequences of short distance larval dispersal in a sessile marine invertebrate. Ecology 66:30–39

    Article  Google Scholar 

  • Paine RT (1979) Disaster, catastrophe, and local persistence of the sea palm Postelsia palmaeformis. Science 205:685–687

    PubMed  CAS  Google Scholar 

  • Paine RT (1988) Habitat suitability and local population persistence of the sea palm Postelsia palmaeformis. Ecology 69:1787–1794

    Article  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Palumbi SR (1995) Using genetics as an indirect estimator of larval dispersal. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, New York, pp 369–387

    Google Scholar 

  • Palumbi SR, Warner RR (2003) Why gobies are like hobbits. Science 299:51–52

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR, Wilson AC (1990) Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and Strongylocentrotus droebachiensis. Evolution 44:403–415

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reed DC, Amsler CD, Ebeling AW (1992) Dispersal in kelps:factors affecting spore swimming and competency. Ecology 73:1577–1585

    Article  Google Scholar 

  • Reusch TBH (2002) Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. Limnol Oceanogr 47:78–85

    Article  Google Scholar 

  • Reusch TBH, Stam WT, Olsen JL (2000) A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol Ecol 9:127–140

    Article  PubMed  CAS  Google Scholar 

  • Roughgarden J, Gaines SD, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466

    PubMed  MathSciNet  CAS  Google Scholar 

  • Ruckelshaus M (1998) Spatial scale of genetic structure and an indirect estimate of gene flow in eelgrass, Zostera marina. Evolution 52:330–343

    Article  Google Scholar 

  • Santelices B (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Annu Rev 28:177–276

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Sousa WP (1984) Intertidal mosaics: patch size, propagule availability, and spatially variable patterns of succession. Ecology 65:1918–1935

    Article  Google Scholar 

  • Spight TM (1974) Sizes of populations of a marine snail. Ecology 55:712–729

    Article  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

    Article  Google Scholar 

  • van der Strate HJ, van de Zande L, Stam WT, Haroun RJ, Olsen JL (2003) Within-island differentiation and between-island homogeneity: Non-equilibrium population structure in the seaweed Cladophoropsis membranacea (Chlorophyta) in the Canary Islands. Eur J Phycol 38:15–23

    Article  Google Scholar 

  • Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williams SL, Di Fiori RE (1996) Genetic diversity and structure in Pelvetia fastigata (Phaeophyta: Fucales): does a small effective neighborhood size explain fine-scale genetic structure? Mar Biol 126:371–382

    Article  CAS  Google Scholar 

  • Williams ST, Benzie JAH (1996) Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific Oceans, revealed by allozyme electrophoresis. Mar Biol 126:99–107

    Article  Google Scholar 

  • Worcester SE (1994) Adult rafting versus larval swimming: dispersal and recruitment of a botryllid ascidian on eelgrass. Mar Biol 121:309–317

    Article  Google Scholar 

  • Wright JT, Zuccarello GC, Steinberg PD (2000) Genetic structure of the subtidal red alga Delisea pulchra. Mar Biol 136:439–448

    Article  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–353

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yoshiyama RM, Sassaman C (1987) Geographical patterns of allozymic variation in three species of intertidal sculpins. Environ Biol Fish 20:203–218

    Article  Google Scholar 

  • Yund PO (1995) Gene flow via the dispersal of fertilizing sperm in a colonial ascidian (Botryllus schlosseri): the effect of male density. Mar Biol 122:649–654

    Article  Google Scholar 

  • Yund PO, O’Neil PG (2000) Microgeographic genetic differentiation in a colonial ascidian (Botryllus schlosseri) population. Mar Biol 137:583–588

    Article  Google Scholar 

  • Zuccarello GC, Yeates PH, Wright JT, Bartlett J (2001) Population structure and physiological differentiation of haplotypes of Caloglossa leprieurii (Rhodophyta) in a mangrove intertidal zone. J Phycol 37:235–244

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the Makah Tribal Council for granting long-term access to Tatoosh Island and the mainland study sites. J. Salamunovitch, F. Stevens, K. Rose, B. Kordas, L. Weis, B. Scott, A. Miller, K. Edwards, J. Duke, and R. Paine provided essential field and laboratory assistance. We also thank R. Hudson, J. Gladstone, K. Tarvin, K. Feldheim, R. Grosberg, J. Pritchard, and M. Hellberg for helpful technical advice, and J. Bergelson and T. Carr for the use of equipment. The study was supported by NSF grant OCE-0117801, the University of Chicago Faculty Research Fund, and the Andrew W. Mellon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handojo T. Kusumo.

Additional information

Communicated by J.P. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusumo, H.T., Pfister, C.A. & Wootton, J.T. Small-scale genetic structure in the sea palm Postelsia palmaeformis Ruprecht (Phaeophyceae). Mar Biol 149, 731–742 (2006). https://doi.org/10.1007/s00227-006-0254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0254-z

Keywords

Navigation