Skip to main content
Log in

Hydrostatic pressure and temperature dependence of wood moisture sorption isotherms

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

By expressing wood moisture content data as a function of adsorption energy, an interesting scaling capability is obtained, wherefrom the general hydrostatic pressure and temperature dependence of wood moisture content is determined. The scaling law is fully consistent with the thermodynamics of swelling. It can be used to transform room condition sorption isotherms to other temperatures and hydrostatic pressures, provided that the wood matrix is not irreversibly modified. A special procedure is suggested for the case of an irreversibly changing wood matrix, as in thermal modification and thermo-hydro-mechanical treatments. Using the present scaling theory, several fundamental aspects of wood moisture sorption are explained, such as the absence of a significant quantity of strongly bound wood moisture, the internal stress generation by sorption hysteresis in the wood cell wall, and the reason for the reversible disappearance of the sigmoid shape of the sorption isotherm at higher temperature. The results of this research may be useful (a) for transformation of known sorption data to other conditions, notably where in situ moisture measurements are difficult to perform and (b) to quantify the effects of internal stresses in the ultrastructure of the cell wall on moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Åkerholm M, Salmén L (2004) Softening of wood polymers induced by moisture studied by dynamic FTIR spectroscopy. Appl Polym Sci 94:2032–2040

    Article  Google Scholar 

  • Allegretti O, Ferrari S (2008) A sensor for direct measurement of internal stress in wood during drying: experimental tests toward industrial application. Drying Technol 26:1150–1154

    Article  CAS  Google Scholar 

  • Almeida G, Gagné S, Hernández RE (2007) A NMR study of water distribution in hardwoods at several equilibrium moisture contents. Wood Sci Technol 41:293–307

    Article  CAS  Google Scholar 

  • Barkas WW (1949) The swelling of wood under stress. HM Stationary Office, London

    Google Scholar 

  • Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Wood Sci 46:431–436

    Article  CAS  Google Scholar 

  • Cox J, McDonald PJ, Gardiner BA (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266

    Article  CAS  Google Scholar 

  • Cudinov BS (1966) The phenomenon of ‘negative swelling’ of wood perpendicular to grain during adsorption. In: Svojstva drevesiny, ee zascita, i novye drevesnye materialy. Izdat. Nauka, Moscow, pp 30–50

  • Engelund E, Thygesen L, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47:141–161

    Article  CAS  Google Scholar 

  • García Esteban L, de Palacios P, García Fernández F, Guindeo A, Conde M, Baonza V (2008) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751

    Google Scholar 

  • Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. In: Wood Handbook, Chapter 04: General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 1–19

  • Gunderson DE (1991) Method for measuring mechanosorptive properties. Pulp Pap Sci 17:J53

    CAS  Google Scholar 

  • Hill CAS (2008) The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62:423–428

    Article  CAS  Google Scholar 

  • Hill CAS, Ormondroyd GA (2004) Dimensional changes in Corsican pine (Pinus nigra Arnold) modified with acetic anhydride measured using a helium pycnometer. Holzforschung 58:544–547

    CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. Appl Polym Sci 112:1524–1537

    Article  CAS  Google Scholar 

  • Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  CAS  Google Scholar 

  • Hoffmeyer P, Thygesen LG, Engelund ET (2011) Equilibrium moisture content in Norway spruce during the first and second desorptions. Holzforschung 65:875–882

    Article  CAS  Google Scholar 

  • Hutson ND, Yang RT (1997) Theoretical basis for the Dubinin-Radushkevitch (DR) adsorption isotherm equation. Adsorption 3:189–195

    Article  CAS  Google Scholar 

  • Jalaludin Z, Hill CAS, Samsi HW, Husain H, Xie Y (2010) Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood-Horrobin model. Holzforschung 64:763–770

    Article  CAS  Google Scholar 

  • Keating B, Hill CAS, Sun D, English R, Davies P, McCue C (2013) The water vapor sorption behavior of a galactomannan cellulose nanocomposite film analyzed using parallel exponential kinetics and the Kelvin-Voigt viscoelastic model. Appl Polym Sci 129:2352–2359

    Article  CAS  Google Scholar 

  • Luikov AV (1968) The Theory of Drying. Énergiya, Moscow

    Google Scholar 

  • Mannes D, Sonderegger W, Pearson H, Lehmann E (2012) On-line monitoring of hygroscopicity changes of wood during thermal modification by means of neutron imaging methods. In: The Sixth European Conference on Wood Modification ECWM6 Proceedings. Ljubljana, Slovenia, pp 489–496

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  PubMed  Google Scholar 

  • Nakano T (2006) Analysis of the temperature dependence of water sorption for wood on the basis of dual mode theory. Wood Sci 52:490–495

    Article  Google Scholar 

  • Navi P, Sandberg D (2012) Thermo-hydro-mechanical processing of wood. EFPL Press, Lausanne

    Google Scholar 

  • Polanyi M (1916) Adsorption of gases (vapors) by a solid non-volatile adsorbent. Verh Dtsch Phys Ges 18:55–80

    CAS  Google Scholar 

  • Rayirath P, Avramidis S, Mansfield SD (2008) The effect of wood drying on crystallinity and microfibril angle in black spruce (Picea mariana). J Wood Chem Technol 28:167–179

    Article  CAS  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biologies 327:873–880

    Article  PubMed  Google Scholar 

  • Siau JF (1984) Transport processes in wood. Springer, Berlin

    Book  Google Scholar 

  • Simpson WT (1971) Moisture changes induced in red oak by transverse stress. Wood Fiber Sci 3:13–21

    Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin

    Book  Google Scholar 

  • Stamm AJ, Loughborough WK (1935) Thermodynamics of the swelling of wood. Phys Chem 39:121–132

    Article  CAS  Google Scholar 

  • Stoeckli F (2001) Dubinin’s theory and its contribution to adsorption science. Russ Chem Bull 50:2265–2272

    Article  CAS  Google Scholar 

  • Suchy M, Virtanen J, Kontturi E, Vuorinen T (2010) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520

    Article  CAS  PubMed  Google Scholar 

  • Thygesen LG, Elder T (2009) Moisture in untreated, acetylated, and furfurylated Norway Spruce monitored during drying below fiber saturation using time domain NMR. Wood Fiber Sci 41:194–200

    CAS  Google Scholar 

  • Vidal Bastías M, Cloutier A (2005) Evaluation of wood sorption models for high temperatures. Maderas Ciencia y tecnología 7:145–158

    Google Scholar 

  • Vrentas JS, Vrentas CM (1996) Hysteresis effects for sorption in glassy polymers. Macromolecules 29:4391–4396

    Article  CAS  Google Scholar 

  • Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. Struct Biol 171:133–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Willems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willems, W. Hydrostatic pressure and temperature dependence of wood moisture sorption isotherms. Wood Sci Technol 48, 483–498 (2014). https://doi.org/10.1007/s00226-014-0616-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-014-0616-5

Keywords

Navigation