Skip to main content
Log in

Changes in the microstructure of birch wood after hydrothermal treatment

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Birch wood (Betula pendula) samples were treated in a thermal regime (140, 160, 180 °C) for 1 h and investigated by means of scanning electron microscopy (SEM). SEM microimages of the wood cross-section were taken from one and the same place before and after the thermal treatment (magnification 100–2,000×). The results of measurements of areas and linear sizes of the birch wood cells show significant changes, which depend on the thermal treatment conditions and the type of the cell: libriform, tracheid, vessel and ray. After the treatment at 180 °C, the integrity of wood morphological structure begins to break up. Voids and cracks are formed between fibres, thus leading to a decline in the mechanical properties of the wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alén R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225°C. Wood Sci Technol 36:163–171

    Article  Google Scholar 

  • Andersons B, Biziks V, Irbe I, Chirkova J, Grinins J (2008) Thermal modification of soft deciduous wood. 4th Meeting of the Nordic Baltic network of wood material science and engineering (WSE), Riga, pp 63–68

  • Awoyemi L, Jones PI (2010) Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Sci Technol 45:261–267

    Article  Google Scholar 

  • Boonstra MJ, Rijsdijk JF, Sander C, Kegel E, Tjeerdsma BF, Militz H, Van Acker J, Stevens M (2006a) Physical aspects of heat-treated wood. Part 1. Softwoods. Maderas. Cienc y Tecnol 8:193–208

    CAS  Google Scholar 

  • Boonstra MJ, Rijsdijk JF, Sander C, Kegel E, Tjeerdsma BF, Militz H, Van Acker J, Stevens M (2006b) Physical aspects of heat-treated wood. Part 2. Hardwoods. Maderas. Cienc y Tecnol 8:209–217

    CAS  Google Scholar 

  • Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155

    Article  CAS  Google Scholar 

  • Dietrichs HH, Sinner H, Puls J (1978) Potential of steaming hardwoods and straw for feed and food production. Holzforschung 32:193–199

    Article  CAS  Google Scholar 

  • Dudkin MS, Gromov VS, Vedernikov NA, Katkevich RG, Cherno NK (1991) Hemicelluloses. Zinatne, Riga, p 488 ISBN 5-7966-0377-9. (in Russian)

  • EN350-2 (1994) Durability of wood and wood-based products—natural durability of solid wood Part 2 Guide to natural durability and treatability of selected wood species of importance in Europe. European Committee for Standardization, Brussel

    Google Scholar 

  • Esteves B, Marques AV, Domingos I, Pereira HM (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41:193–207

    Article  CAS  Google Scholar 

  • Esteves BM, Domingos IJ, Pereira HM (2008) Pine wood modification by heat treatment in air. Bio Res 3(1):142–154

    CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter & Co, Berlin, p 613

    Google Scholar 

  • Gromov VS, Yevdokimov AM, Abramovich CL, Hrol YS (1977) Investigation of lignin distribution in wood and its delignification topochemistry by UV microspectrophotometry. I Lignin distribution in birch wood cell walls. Wood Chem 6:73–79 (in Russian)

    Google Scholar 

  • Hill CAS (2006) Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons p 239, ISBN: 0-470-02172-1

  • Militz H (2002) Heat treatment of wood: European processes and their background. The International Research Group on wood protection. Document IRG/WP02-40241

  • Rowell RM (2005) In: Rowell RM (ed) Handbook of wood chemistry and wood composites. Taylor & Francis Group. CRC Press, Boca Raton, Fl,. p 462, ISBN 0-8493-1588-3

  • Sang OK, Won JS, Hansol C, Byoung CK, In JC (1999) Rheological investigation on the anisotropic phase of cellulose–MMNO/H2O solution system. Polymer 40:6443–6450

    Article  Google Scholar 

  • Scheiding W (2008) Entwiclung des TMT Sektors seit 2008. 5th Eropäischer TMT—Workshop 2008. Dresden

  • Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Weiland JJ, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61:216–220

    CAS  Google Scholar 

  • Wikberg H, Maunu SL (2004) Characterisation of thermally modified hard- and soft-woods by 13C CPMAS NMR. Carbohydr Polym 58:461–466

    Article  CAS  Google Scholar 

  • Zaman A, Alén R, Kotilainen R (2000) Thermal behavior of (Pinus sylvestris) and (Betula pendula) at 200-230°C. Wood Fiber Sci 32:138–143 http://www.zm.gov.lv/doc_upl/mezaudzu_kraja.pdf

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the European Regional Development Fund project “Innovative wood and its processing materials with upgraded service properties” Nr. 2010/0324 2DP/2.1.1.1.0/10/APIA/VIAA/057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimirs Biziks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biziks, V., Andersons, B., Beļkova, Ļ. et al. Changes in the microstructure of birch wood after hydrothermal treatment. Wood Sci Technol 47, 717–735 (2013). https://doi.org/10.1007/s00226-013-0531-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0531-1

Keywords

Navigation