Skip to main content
Log in

Chemical investigations on the thermal behaviour of wood during friction welding

  • ORIGINAL
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Friction welding is a new technology in the course of which wood pieces are subjected to circular or linear movements in a welding machine. The wood in the contact zone is heated and melted. Aiming at a better understanding of the thermal alteration of wood and the formation of a viscous layer acting as adhesive, the thermally changed material was taken to be analysed by chemical and spectroscopic methods. As a manifestation of thermally splitting of wood, the total amount of extractable compounds within the joint material (JM) is higher than that of unaltered spruce. Cellulose was found less altered than the other essential wood components. Polyoses, on the other hand, are less stable under the conditions of friction welding; they are detectable only in small amounts in the altered zone. Lignin also suffers distinct changes as demonstrated by the increase of free phenolic groups and the decrease of the typical bonds between the phenolpropane units. Furan derivatives were detected within the volatiles of the smoke gas, arising mainly from the polyoses. It is obvious that reactions between furfural and other furan derivatives with lignin belong to the main reactions in the friction zone leading to cross-linking of the JM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alén R, Kotilainen R, Zaman A (2002) Thermochemical behaviour of Norway Spruce (Picea abies) at 180–225°C. Wood Sci Technol 36:163–171

    Article  CAS  Google Scholar 

  • Alma MH, Baştürk MA, Shiraishi N (2001) Co-condensation of NaOH-catalyzed liquefied wood wastes, phenol, and formaldehyde for the production of resol-type adhesives. Ind Eng Chem Res 40:5036–5039

    Article  CAS  Google Scholar 

  • Dao LT, Zavarin E (1996) Chemically activated furfuryl alcohol-based wood adhesives. I. The role of furfuryl alcohol. Holzforschung 50:470–476

    Article  CAS  Google Scholar 

  • Domburg G, Kalnins AI, Kiselis OV (1966) Thermal analysis in the chemistry of wood. Latvijas PSR Zinatnu Akad Vestis 12:52–57

    Google Scholar 

  • Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 83–109

    Google Scholar 

  • Fengel D, Wegener G (1979) Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. In: Brown RD Jr, Jurasek L (eds) Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis. Adv. Chem. Ser. No. 181. ACS, pp 145–158

  • Fengel D, Wegener G (2003) Wood – chemistry, ultrastructure, reactions. Remagen, Kessel, http://www.forstbuch.de

  • Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh-Werkst 57:191–202

    Article  CAS  Google Scholar 

  • Gfeller B, Zanetti M, Properzi M, Pizzi A, Pichelin F, Lehmann M, Delmotte L (2003) Wood bonding by vibrational welding. J Adhes Sci 17:1573–1589

    Article  CAS  Google Scholar 

  • Gfeller B, Pizzi A, Zanetti M, Properzi M, Pichelin F, Lehmann M, Delmotte L (2004) Solid wood joints by in situ welding of structural wood constituents. Holzforschung 58:45–52

    Article  CAS  Google Scholar 

  • Gliniorz KU, Natterer J (2000) Holzschweißen – innovative Verbindungstechnologien im Holzbau, Tagungsunterlagen, Symposium Ligna Plus Hannover, pp 9–18

  • Gliniorz KU, Mohr S, Natterer J, Navi P (eds) (2001) Wood welding. In: Proceedings of the first international conference of the European Society for Wood Mechanics, Lausanne, Switzerland, pp 571–574

  • Haw JF, Schultz TP (1985) Carbon – 13CP/MAS NMR and FT-IR study of low-temperature lignin pyrolysis. Holzforschung 39:289–296

    Article  CAS  Google Scholar 

  • Illing S (2002) Untersuchung des Verfahrens und der Produkteigenschaften beim Pyrolyse-Schweißen von Holz durch Reibschweißen. Diploma Thesis, EPF Lausanne, IBOIS

  • Klashorst GH (1988) The modification of Lignin at position 2 and 6 of the phenylpropanoid nucleii – part 2: hydroxymethylation of lignin model compounds. J Wood Chem Technol 8:209–220

    Google Scholar 

  • Kotilainen RA, Toivanen TJ, Alén RJ (2000) FT-IR monitoring of chemical changes in softwood during heating. J Wood Chem Technol 20:307–320

    Article  CAS  Google Scholar 

  • Leban JM, Pizzi A, Wieland S, Zanetti M, Properzi M, Pichelin F (2004) X-ray microdensitometry analysis of vibration-welded wood. J Adhes Sci Technol 18:673–685

    Article  CAS  Google Scholar 

  • Lingens A (2003) Untersuchung des Abbrandes und der Brandgase ausgewählter Holzarten in Abhängigkeit vom chemischen und strukturellen Holzaufbau. Dissertation, Technische Universität München

  • Månsson P (1983) Quantitative determination of phenolic and total hydroxyl groups in lignin. Holzforschung 37:143–146

    Google Scholar 

  • Mohr S (2001) Holzschweißen. Diploma Thesis, EPF Lausanne, IBOIS

  • Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24:13–26

    Article  CAS  Google Scholar 

  • Pizzi A, Leban JM, Kanazawa F, Properzi M, Pichelin F (2004) Wood dowel bonding by high-speed rotation welding. J Adhes Sci Technol 18:1263–1278

    Article  CAS  Google Scholar 

  • Rolando C, Monties B, Lapierre C (1992) Thioacidolysis. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 334–349

    Google Scholar 

  • Sandermann W, Augustin H (1964) Chemische Untersuchungen über die thermische Zersetzung von Holz – III Mitteilung: Chemische Untersuchungen des Zersetzungsablaufs. Holz Roh-Werkst 22:377–386

    CAS  Google Scholar 

  • Sarkanen KV, Ludwig CH (eds) (1971) Lignins – occurrence, formation, structure and reactions. Wiley-Interscience, New York

  • Stamm B (2005) Development of friction welding of wood-physical, mechanical and chemical studies. Doctoral Thesis, EPF Lausanne, IBOIS

  • Stamm B, Natterer J, Navi P (2005a) Joining wood by friction welding. Holz Roh-Werkst 63:313–320

    Article  Google Scholar 

  • Stamm B, Natterer J, Navi P (2005b) Joining of wood layers by friction welding. J Adhes Sci Technol 19:1129–1139

    Article  CAS  Google Scholar 

  • Stamm B, Windeisen E, Natterer J, Wegener G (2005c) Thermal behaviour of polysaccharides in wood during friction welding. Holz Roh-Werkst 63:388–389

    Article  CAS  Google Scholar 

  • Suthoff B, Kutzer HJ (1997) Offenlegungsschrift DE 197 46 782 A 1. Deutsches Patent und Markenamt

  • Suthoff B, Schaaf A, Hentschel H, Franz U (1996) Offenlegungsschrift DE 196 20 273 A 1. Deutsches Patent und Markenamt

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh-Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Wieland S, Shi B, Pizzi A, Properzi M, Stampanoni M, Abela R, Lu X, Pichelin F (2005) Vibration welding of wood: X-ray tomography, additives, radical concentration. For Prod J 55(1):84–87

    CAS  Google Scholar 

  • Wienhaus O (1999) Modifizierung des Holzes durch eine milde Pyrolyse – abgeleitet aus den allgemeinen Prinzipien der Thermolyse des Holzes. Wissenschaftl Zeitschr Univ Dresden 48:17–22

    CAS  Google Scholar 

  • Windeisen E, Strobel C, Wegener G (2003) Chemische Charakterisierung von thermisch belastetem Holz: Bestimmung des Acetylgruppengehalts und FT-IR-Spektroskopie. Holz Roh-Werkst 61:471–472

    Article  Google Scholar 

  • Young RA, Fujita B, River BH (1985) New approaches to wood bonding. A base-activated lignin adhesive system. Wood Sci Technol 9:363–381

    Google Scholar 

  • Zaman A, Alén R, Kotilainen R (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230°C. Wood Fiber Sci 32:138–143

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Swiss National Research Foundation gratefully for funding this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Windeisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamm, B., Windeisen, E., Natterer, J. et al. Chemical investigations on the thermal behaviour of wood during friction welding. Wood Sci Technol 40, 615–627 (2006). https://doi.org/10.1007/s00226-006-0097-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-006-0097-2

Keywords

Navigation