Skip to main content
Log in

Thermal conductivity of wood: effect of fatigue treatment

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The effect of fatigue treatment on the thermal conductivity of wood was studied. Fresh Norway spruce samples both with and without fatigue were analyzed in a temperature rise experiment by means of an infrared camera. The experimental temperature profiles were compared to finite-element simulations of heat conduction. The temporal features of temperature profiles indicate an increase in the conductivity of fatigued wood, which points to changes in the cellular structure of wood. The importance of fatigue for thermal conductivity and consequently for mechanical pulp-making is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson S, Sandberg C, Engstrand P (2012) Effect of long fibre concentration on low consistency refining of mechanical pulp. Nord Pulp Pap Res J 27(4):702–706

    Article  CAS  Google Scholar 

  • Berg J-E (2001) Effect of impact velocity on the fracture of wood as related to the mechanical pulping process. Wood Sci Technol 35(4):343–351

    Article  CAS  Google Scholar 

  • Björkqvist T, Lucander M (2001) Grinding surface with an energy-efficient profile. In: Proceedings of international mechanical pulping conference, pp 373–380

  • Bjurhager I, Ljungdahl J, Wallstrom L, Gamstedt EK, Berglund LA (2010) Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung 64(2):243–250

    Article  CAS  Google Scholar 

  • Bouguerra A, Ait-Mokhtar A, Amiri O, Diop MB (2001) Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Comm Heat Mass Transfer 28(8):1065–1078

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford Science Publications, Oxford

    Google Scholar 

  • Clancy P (2001) Advances in modelling heat transfer through wood framed walls in fire. Fire Mater 25(6):241–254

    Article  CAS  Google Scholar 

  • Dumail JF, Salmen L (1997) Compression behaviour of saturated wood perpendicular to grain under large deformations. Comparison between water-saturated and ethylene glycol-saturated wood. Holzforschung 51(4):296–302

    Article  CAS  Google Scholar 

  • Fortino S, Genoese A, Genoese A, Rautkari L (2013) FEM simulation of the hygro-thermal behaviour of wood under surface densification at high temperature. J Mater Sci 48(21):7603–7612

    Article  CAS  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids—structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Glass SV, Zelinka SJ (2010) Moisture relations and physical properties of wood. Wood handbook—wood as an engineering material. Forest Service, US Department of Agriculture, Washington, DC

    Google Scholar 

  • Gorski D, Mörseburg K, Axelsson P, Engstrand P (2011) Peroxide-based ATMP refining of spruce: energy efficiency, fibre properties and pulp quality. Nord Pulp Pap Res J 26(1):47–63

    Article  CAS  Google Scholar 

  • Härkönen E, Tienvieri T (2001) Energy savings in TMP pulping. In: Proceedings of international mechanical pulping conference, pp 547–556

  • Heikkurinen A, Vaarasalo J, Karnis A (1993) Effect of initial defibration on the properties of refiner mechanical pulp. J Pulp Pap Sci 19(3):119–124

    CAS  Google Scholar 

  • Htun M, Salmén L (1996) The importance of understanding the physical and chemical properties of wood to achieve energy efficiency in mechanical pulping. Wochenbl Papierfabr 124(6):232–235

    CAS  Google Scholar 

  • Illikainen M, Harkonen E, Ullmar M, Niinimäki J (2006) Distribution of power dissipation in a TMP refiner plate gap. Pap Puu 88(5):293–297

    CAS  Google Scholar 

  • Johansson L, Hill J, Gorski D, Axelsson P (2011) Improvement of energy efficiency in TMP refining by selective wood disintegration and targeted application of chemicals. Nord Pulp Pap Res J 26(1):31–46

    Article  CAS  Google Scholar 

  • Kawasaki T, Kawai S (2006) Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors. J Wood Sci 52(1):75–83

    Article  Google Scholar 

  • Kollmann FFP, Côté WA Jr (1968) Principles of wood science and technology. Springer, Berlin

    Book  Google Scholar 

  • Lönnberg B (2009) Fundamentals of mechanical pulping. In: Lönnberg B (ed) Mechanical pulping, 2nd edn. Paperi ja Puu Oy, Helsinki

    Google Scholar 

  • Lucander M, Asikainen S, Pöhler T, Saharinen E, Björkqvist T (2009) Fatigue treatment of wood by high frequency cyclic loading. J Pulp Pap Sci 35(3–4):81–85

    CAS  Google Scholar 

  • Miksic A, Myntti M, Koivisto J, Salminen LI, Alava MJ (2013) Effect of fatigue and annual rings’ orientation on mechanical properties of wood under cross-grain uniaxial compression. Wood Sci Technol 47:1117–1133

    Article  CAS  Google Scholar 

  • Morris DR, Steward FR, Gilmore CA (2000) Comparative analysis of the consumption of energy of two wood pulping processes. Energy Convers Manag 41(14):1557–1568

    Article  CAS  Google Scholar 

  • Sabourin MJ (1998) Evaluation of a compressive pretreatment process on TMP properties and energy requirements. Annual meeting—technical section, Canadian Pulp and Paper Association, Preprints, Pt B, pp B41–B50

  • Sabourin MJ, Hart PW (2010) Echanced fiber quality of black spruce (Picea mariana) thermomechanical pulp fiber through selective enzyme application. Ind Eng Chem Res 49:5945–5951

    Article  CAS  Google Scholar 

  • Salmi A, Salminen L, Hæggström E (2009) Quantifying fatigue generated in high strain rate cyclic loading of Norway spruce. J Appl Phys 106(104905):1–5

    Google Scholar 

  • Salmi A, Salminen L, Lucander M, Hæggström E (2012) Significance of fatigue for mechanical defibration. Cellulose 19(2):575–579

    Article  Google Scholar 

  • Simula S, Ketoja KA, Niskanen KJ (1999) Heat transfer to paper in a hot nip. Nord Pulp Pap Res J 14(4):273–278

    Article  CAS  Google Scholar 

  • Sirviö J, Särkilahti A, Liitiä T, Fredrikson A, Nurminen I (2012) Peroxide bleaching of thermo-mechanical pulp from stored spruce wood. J Sci Technol For Prod Process 2(5):26–31

    Google Scholar 

  • Sonderegger W, Hering S, Niemz P (2011) Thermal behavior of Norway spruce and European beech in and between principal anatomical directions. Holzforschung 65:369–375

    CAS  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York

    Google Scholar 

  • Steinhagen HP (1977) Thermal conductive properties of wood, green or dry, from 40 to 100°C: a literature review. Forest Service, US Department of Agriculture, Washington DC

    Google Scholar 

  • Suleiman BM, Larfeldt J, Leckner B, Gustavsson M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33(6):465–473

    Article  CAS  Google Scholar 

  • Viforr S, Salmén L (2007) Shear/compression treatment of wood material—a way of reducing energy demand in TMP processes. In: International mechanical pulping conference 2007, TAPPI, pp 1038–1044

Download references

Acknowledgments

The program of the Centres of Excellence of the Academy of Finland is thanked for financial support. We also thank the Academy of Finland for funding under the project 138623. Mr. Esa Nenonen is acknowledged for the hot plate apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ovaska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauranen, A., Ovaska, M., Koivisto, J. et al. Thermal conductivity of wood: effect of fatigue treatment. Wood Sci Technol 49, 359–370 (2015). https://doi.org/10.1007/s00226-015-0705-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0705-0

Keywords

Navigation