Skip to main content

Biochemical Markers of Bone Turnover

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 1809 Accesses

Abstract

While radiographic approaches such as dual-energy X-ray absorptiometry (DXA) remain a primary diagnostic modality to assess for osteoporosis and fracture risk, radiographic methods have several limitations. Radiographic methods tend to respond relatively slowly to disease processes or therapeutics that influence bone metabolism, and there is commonly an interest in assessing therapeutic or disease-mediated impact on bone before radiographic changes are detectable. Moreover, it has become apparent that radiographic measures of total bone mass only capture a portion of fracture risk, thus spurring interest in complimentary alternative approaches such as serum or urine biomarkers that reflect the dynamics of bone turnover (hereafter, bone turnover markers, BTMs).

Ultimately, bone mass reflects the balance in activity between bone formation by osteoblasts versus bone resorption by osteoclasts. Accordingly, BTMs can also be mapped to these cell types. Generally, anabolic markers reflect either characteristic proteins secreted by osteoblasts, such as bone-specific alkaline phosphatase (BSAP), or matrix protein fragments thereof that are released into circulation when the organic matrix of bone is secreted. The most widely utilized markers of bone resorption all tend to be fragments of matrix proteins that are released into circulation during the course of controlled proteolysis that accompanies bone resorption. Here we will first profile the bone turnover markers with the widest clinical utilization, reviewing the composition of each of these markers and how they relate to bone physiology. Next we will consider how both pre-analytic variation and differences in analytic methods pose challenges to the clinical use of BTMs. Lastly, we will review evidence supporting the use of BTMs for a variety of clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garnero P, Ferreras M, Karsdal MA, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res [Internet]. 2003;18(5):859–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12733725

    Article  CAS  Google Scholar 

  2. Garnero P, Borel O, Delmas PD. Evaluation of a fully automated serum assay for C-terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin Chem [Internet]. 2001;47(4):694–702. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11274020

    Article  CAS  Google Scholar 

  3. Elomaa I, Virkkunen P, Risteli L, Risteli J. Serum concentration of the cross-linked carboxyterminal telopeptide of type I collagen (ICTP) is a useful prognostic indicator in multiple myeloma. Br J Cancer [Internet]. 1992;66(2):337–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1503907

    Article  CAS  Google Scholar 

  4. Garnero P, Cloos P, Sornay-Rendu E, Qvist P, Delmas PD. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res [Internet]. 2002;17(5):826–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12009013

    Article  CAS  Google Scholar 

  5. Cloos PA, Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J [Internet]. 2000;345(Pt 3):473–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10642504

    Article  CAS  Google Scholar 

  6. Fall PM, Kennedy D, Smith JA, Seibel MJ, Raisz LG. Comparison of serum and urine assays for biochemical markers of bone resorption in postmenopausal women with and without hormone replacement therapy and in men. Osteoporos Int. 2000;11(6):481–5.

    Article  CAS  PubMed  Google Scholar 

  7. Eastell R, Mallinak N, Weiss S, et al. Biological variability of serum and urinary N-telopeptides of type I collagen in postmenopausal women. J Bone Miner Res [Internet]. 2000;15(3):594–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10750575

    Article  CAS  Google Scholar 

  8. Koivula M-K, Ruotsalainen V, Björkman M, et al. Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem [Internet], Pt 1. 2010;47:67–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19940208

    Article  PubMed  CAS  Google Scholar 

  9. Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrød B. Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med [Internet]. 1994;179(2):405–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8294857

    Article  CAS  Google Scholar 

  10. Smedsrød B, Melkko J, Risteli L, Risteli J. Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J [Internet]. 1990;271(2):345–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2241919

    Article  Google Scholar 

  11. Mi Y, Lin A, Fiete D, Steirer L, Baenziger JU. Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle. J Biol Chem [Internet]. 2014;289(17):12157–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24619407

    Article  CAS  Google Scholar 

  12. Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet (London, England) [Internet]. 1984;1(8386):1091–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6144827

    Article  CAS  Google Scholar 

  13. Oury F, Khrimian L, Denny CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell [Internet]. 2013;155(1):228–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24074871

    Article  CAS  Google Scholar 

  14. Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord [Internet]. 2015;16(2):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25577163

    Article  CAS  Google Scholar 

  15. Mera P, Laue K, Ferron M, et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab [Internet]. 2017;25(1):218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28076763

    Article  CAS  Google Scholar 

  16. Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell [Internet]. 2011;144(5):796–809. Available from: https://doi.org/10.1016/j.cell.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferron M, Wei J, Yoshizawa T, Ducy P, Karsenty G. An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem Biophys Res Commun [Internet]. 2010;397(4):691–6. Available from: https://doi.org/10.1016/j.bbrc.2010.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell [Internet]. 2010;142(2):296–308. Available from: https://doi.org/10.1016/j.cell.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knapen MHJ, Hamulyak K, Vermeer C. The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretion. Ann Intern Med. 1989;111(12):1001–5.

    Article  CAS  PubMed  Google Scholar 

  20. Khrimian L, Obri A, Ramos-Brossier M, et al. Gpr158 mediates osteocalcin’s regulation of cognition. J Exp Med [Internet]. 2017;214(10):2859–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28851741

    Article  CAS  Google Scholar 

  21. Ivaska KK, Hellman J, Likojärvi J, et al. Identification of novel proteolytic forms of osteocalcin in human urine. Biochem Biophys Res Commun [Internet]. 2003;306(4):973–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12821138

    Article  CAS  Google Scholar 

  22. Pi M, Kapoor K, Ye R, et al. Evidence for osteocalcin binding and activation of GPRC6A in $β$-cells. Endocrinology [Internet]. 2016;157(5):1866–80.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27007074

    Article  CAS  Google Scholar 

  23. Novak JF, Hayes JD, Nishimoto SK. Plasmin-mediated proteolysis of osteocalcin. J Bone Miner Res [Internet]. 1997;12(7):1035–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9200002

    Article  CAS  Google Scholar 

  24. Cloos PAC, Christgau S. Characterization of aged osteocalcin fragments derived from bone resorption. Clin Lab [Internet]. 2004;50(9–10):585–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15481635

    CAS  Google Scholar 

  25. Colford J, Sailer D, Langman C. Five osteocalcin assays compared: tracer specificity, fragment interference, and calibration. Clin Chem [Internet]. 1997;43(7):1240–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9216464

    Article  CAS  Google Scholar 

  26. Käkönen SM, Hellman J, Karp M, et al. Development and evaluation of three immunofluorometric assays that measure different forms of osteocalcin in serum. Clin Chem [Internet]. 2000;46(3):332–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10702519

    Article  Google Scholar 

  27. Power MJ, O’Dwyer B, Breen E, Fottrell PF. Osteocalcin concentrations in plasma prepared with different anticoagulants. Clin Chem [Internet]. 1991;37(2):281–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1993340

    Article  CAS  Google Scholar 

  28. Seeman E, Delmas PD. Bone quality – the material and structural basis of bone strength and fragility. N Engl J Med [Internet]. 2006;354(21):2250–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16723616

    Article  CAS  Google Scholar 

  29. Yamauchi M, Shiiba M. Lysine hydroxylation and cross-linking of collagen. Methods Mol Biol [Internet]. 2008;446:95–108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18373252

    Article  CAS  Google Scholar 

  30. Lindert U, Kraenzlin M, Campos-Xavier AB, et al. Urinary pyridinoline cross-links as biomarkers of osteogenesis imperfecta. Orphanet J Rare Dis [Internet]. 2015;10:104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26306627

    Article  Google Scholar 

  31. Bank RA, Tekoppele JM, Janus GJ, et al. Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing. J Bone Miner Res [Internet]. 2000;15(7):1330–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10893681

    Article  CAS  Google Scholar 

  32. Pasquali M, Dembure PP, Still MJ, Elsas LJ. Urinary pyridinium cross-links: a noninvasive diagnostic test for Ehlers-Danlos syndrome type VI. N Engl J Med [Internet]. 1994;331(2):132–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8208263

    Article  CAS  Google Scholar 

  33. Kraenzlin ME, Kraenzlin CA, Meier C, Giunta C, Steinmann B. Automated HPLC assay for urinary collagen cross-links: effect of age, menopause, and metabolic bone diseases. Clin Chem [Internet]. 2008;54(9):1546–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18653826

    Article  CAS  Google Scholar 

  34. Kamel S, Brazier M, Desmet G, Picard C, Mennecier I, Sebert J. High-performance liquid chromatographic determination of 3-hydroxypyridinium derivatives as new markers of bone resorption. J Chromatogr [Internet]. 1992;574(2):255–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1618957

    Article  CAS  Google Scholar 

  35. Gomez B, Ardakani S, Evans BJ, Merrell LD, Jenkins DK, Kung VT. Monoclonal antibody assay for free urinary pyridinium cross-links. Clin Chem [Internet]. 1996;42(8 Pt 1):1168–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8697572

    Article  CAS  Google Scholar 

  36. Kress BC, Mizrahi IA, Armour KW, Marcus R, Emkey RD, Santora AC. Use of bone alkaline phosphatase to monitor alendronate therapy in individual postmenopausal osteoporotic women. Clin Chem [Internet]. 1999;45(7):1009–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10388477

    Article  CAS  Google Scholar 

  37. Hessle L, Johnson KA, Anderson HC, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A [Internet]. 2002, 99;(14):9445–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=123160&tool=pmcentrez&rendertype=abstract

  38. Whyte MP. Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol [Internet]. 2016;12(4):233–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26893260

    Article  CAS  Google Scholar 

  39. PetitClerc C. Quantitative fractionation of alkaline phosphatase isoenzymes according to their thermostability. Clin Chem [Internet]. 1976;22(1):42–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1158

    Article  CAS  Google Scholar 

  40. Moss DW. Alkaline phosphatase isoenzymes. Clin Chem [Internet]. 1982;28(10):2007–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6751596

    Article  CAS  Google Scholar 

  41. Rosalki SB, Foo AY. Two new methods for separating and quantifying bone and liver alkaline phosphatase isoenzymes in plasma. Clin Chem [Internet]. 1984;30(7):1182–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6547374

    Article  CAS  Google Scholar 

  42. Ahmed F, Gibbons SM. Bone-specific alkaline phosphatase by immunoassay or electrophoresis: their use in clinical practice. J Clin Pathol [Internet]. 2015;68(3):246–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25540265

    Article  CAS  Google Scholar 

  43. Price CP, Milligan TP, Darte C. Direct comparison of performance characteristics of two immunoassays for bone isoform of alkaline phosphatase in serum. Clin Chem [Internet]. 1997;43(11):2052–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9365388

    Article  CAS  Google Scholar 

  44. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  45. Thiering E, Brüske I, Kratzsch J, et al. Associations between serum 25-hydroxyvitamin D and bone turnover markers in a population based sample of German children. Sci Rep [Internet]. 2015;5(January 2016):18138. Available from: http://www.nature.com/articles/srep18138

    CAS  Google Scholar 

  46. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.

    Article  CAS  PubMed  Google Scholar 

  47. Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–9.

    Article  CAS  PubMed  Google Scholar 

  48. Gorai I, Chaki O, Nakayama M, Minaguchi H. Urinary biochemical markers for bone resorption during the menstrual cycle. Calcif Tissue Int [Internet]. 1995;57(2):100–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7584868

    Article  CAS  Google Scholar 

  49. van Coeverden SCCM, Netelenbos JC, de Ridder CM, Roos JC, Popp-Snijders C, Delemarre-van de Waal HA. Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf) [Internet]. 2002;57(1):107–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12100078

    Article  Google Scholar 

  50. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res [Internet]. 1996;11(3):337–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8852944

    Article  CAS  Google Scholar 

  51. Cross NA, Hillman LS, Allen SH, Krause GF, Vieira NE. Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr [Internet]. 1995;61(3):514–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7872214

    Article  CAS  Google Scholar 

  52. Coiffier G, Bouvard B, Chopin F, et al. Common bone turnover markers in rheumatoid arthritis and ankylosing spondylitis: a literature review. Joint Bone Spine [Internet]. 2013;80(3):250–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23142254

    Article  Google Scholar 

  53. Obrant KJ, Ivaska KK, Gerdhem P, Alatalo SL, Pettersson K, Väänänen HK. Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone [Internet]. 2005;36(5):786–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15804493

    Article  CAS  Google Scholar 

  54. Scheja A, Hellmer G, Wollheim FA, Akesson A. Carboxyterminal type I procollagen peptide concentrations in systemic sclerosis: higher levels in early diffuse disease. Br J Rheumatol [Internet]. 1993;32(1):59–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8422562

    Article  CAS  Google Scholar 

  55. Allanore Y, Borderie D, Lemaréchal H, Cherruau B, Ekindjian OG, Kahan A. Correlation of serum collagen I carboxyterminal telopeptide concentrations with cutaneous and pulmonary involvement in systemic sclerosis. J Rheumatol [Internet]. 2003;30(1):68–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12508392

    CAS  Google Scholar 

  56. Klappacher G, Franzen P, Haab D, et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol [Internet]. 1995;75(14):913–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7733000

    Article  CAS  Google Scholar 

  57. Kunishige M, Kijima Y, Sakai T, et al. Transient enhancement of oxidant stress and collagen turnover in patients with acute worsening of congestive heart failure. Circ J [Internet]. 2007;71(12):1893–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18037742

    Article  Google Scholar 

  58. Woitge HW, Pecherstorfer M, Li Y, et al. Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res [Internet]. 1999;14(5):792–801. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10320528

    Article  CAS  Google Scholar 

  59. Nakanishi M, Yoh K, Miura T, Ohasi T, Rai SK, Uchida K. Development of a kinetic assay for band 5b tartrate-resistant acid phosphatase activity in serum. Clin Chem [Internet]. 2000;46(4):469–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10759470

    Article  CAS  Google Scholar 

  60. Igarashi Y, Lee MY, Matsuzaki S. Acid phosphatases as markers of bone metabolism. J Chromatogr B Analyt Technol Biomed Life Sci [Internet]. 2002;781(1–2):345–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12450668

    Article  CAS  Google Scholar 

  61. Miller PD. Chronic kidney disease and osteoporosis: evaluation and management. Bonekey Rep [Internet]. 2014;3:542. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24991405

    CAS  Google Scholar 

  62. Plebani M. Harmonization in laboratory medicine: the complete picture. Clin Chem Lab Med [Internet]. 2013;51(4):741–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23435100

    CAS  Google Scholar 

  63. Paper P, Vasikaran S, Eastell R, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int [Internet]. 2011;22(2):391–420. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21184054

    Article  Google Scholar 

  64. Morris HA, Eastell R, Jorgensen NR, et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta [Internet]. 2017;467:34–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27374301

    Article  CAS  Google Scholar 

  65. Blumsohn A, Marin F, Nickelsen T, et al. Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int [Internet]. 2011;22(6):1935–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20938767

    Article  CAS  Google Scholar 

  66. Michelsen J, Wallaschofski H, Friedrich N, et al. Reference intervals for serum concentrations of three bone turnover markers for men and women. Bone [Internet]. 2013;57(2):399–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24076251

    Article  CAS  Google Scholar 

  67. Chubb SAP, Byrnes E, Manning L, et al. Reference intervals for bone turnover markers and their association with incident hip fractures in older men: the Health in Men study. J Clin Endocrinol Metab [Internet]. 2015;100(1):90–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25322270

    Article  CAS  Google Scholar 

  68. Hannon R, Blumsohn A, Naylor K, Eastell R. Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res [Internet]. 1998;13(7):1124–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9661076

    Article  CAS  Google Scholar 

  69. Garnero P, Darte C, Delmas PD. A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover. Bone [Internet]. 1999;24(6):603–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10375203

    Article  CAS  Google Scholar 

  70. Sowers MR, Zheng H, Greendale GA, et al. Changes in bone resorption across the menopause transition: effects of reproductive hormones, body size, and ethnicity. J Clin Endocrinol Metab [Internet]. 2013;98(7):2854–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23666961

    Article  CAS  Google Scholar 

  71. Bauer DC, Sklarin PM, Stone KL, et al. Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res [Internet]. 1999;14(8):1404–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10457273

    Article  CAS  Google Scholar 

  72. Shieh A, Han W, Ishii S, Greendale GA, Crandall CJ, Karlamangla AS. Quantifying the balance between total bone formation and total bone resorption: an index of net bone formation. J Clin Endocrinol Metab [Internet]. 2016;101(7):2802–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27336357

    Article  CAS  Google Scholar 

  73. Gossiel F, Altaher H, Reid DM, et al. Bone turnover markers after the menopause: T-score approach. Bone. 2018;111:44–8.

    Article  PubMed  Google Scholar 

  74. Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res [Internet]. 2004;19(3):386–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15040826

    Article  CAS  Google Scholar 

  75. Robinson-Cohen C, Katz R, Hoofnagle AN, et al. Mineral metabolism markers and the long-term risk of hip fracture: the cardiovascular health study. J Clin Endocrinol Metab [Internet]. 2011;96(7):2186–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21508146

    Article  CAS  Google Scholar 

  76. Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus – a systematic review. Bone [Internet]. 2016;82:69–78. Available from: https://doi.org/10.1016/j.bone.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  77. Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P. Biochemical markers of bone turnover in diabetes patients – a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int [Internet]. 2014;25(6):1697–708. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24676844

    Article  CAS  Google Scholar 

  78. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet. 1996;348:1535–41.

    Article  CAS  PubMed  Google Scholar 

  79. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999 Oct 13;282(14):1344–52.

    Google Scholar 

  80. Cummings SR, Martin JS, Mcclung M, et al. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009 Aug 20;361(8):756–65.

    Google Scholar 

  81. Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    Article  CAS  PubMed  Google Scholar 

  82. Ettinger B, Black DM, Mitlak BH,et al. Reduction of vertebral fracture risk in postmenopausal women with. 2019

    Google Scholar 

  83. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  CAS  PubMed  Google Scholar 

  84. Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs placebo on newvertebral fractures in postmenopausalwomen with osteoporosis a randomized clinical trial. JAMA. 2016;316(7):722–33.

    Article  CAS  PubMed  Google Scholar 

  85. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med [Internet] 2014;370(5):412–420 . Available from: http://www.ncbi.nlm.nih.gov/pubmed/24382002

    Article  CAS  PubMed  Google Scholar 

  86. Leder BZ, Tsai JN, Uihlein AV, et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab [Internet]. 2014;99(5):1694–700. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24517156

    Article  CAS  Google Scholar 

  87. Finkelstein JS, Wyland JJ, Lee H, Neer RM. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab [Internet]. 2010;95(4):1838–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20164296

    Article  CAS  Google Scholar 

  88. Cosman F, Eriksen EF, Recknor C, et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J Bone Miner Res [Internet]. 2011;26(3):503–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20814967

    Article  CAS  Google Scholar 

  89. Finkelstein JS, Leder BZ, S-AM B, et al. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J Clin Endocrinol Metab [Internet]. 2006;91(8):2882–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16684825

    Article  CAS  Google Scholar 

  90. Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med [Internet]. 2003;349(13):1207–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14500804

    Article  CAS  Google Scholar 

  91. Chen P, Satterwhite JH, Licata AA, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res [Internet]. 2005;20(6):962–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15883636

    Article  CAS  Google Scholar 

  92. Tsujimoto M, Chen P, Miyauchi A, Sowa H, Krege JH. PINP as an aid for monitoring patients treated with teriparatide. Bone [Internet]. 2011;48(4):798–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21168536

    Article  CAS  Google Scholar 

  93. Eastell R, Christiansen C, Grauer A, et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res [Internet]. 2011;26(3):530–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20839290

    Article  CAS  Google Scholar 

  94. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res [Internet]. 2003;18(6):1051–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12817758

    Article  CAS  Google Scholar 

  95. Vilaca T, Gossiel F, Eastell R. Bone turnover markers: use in fracture prediction. J Clin Densitom [Internet]. 2017;20(3):346–52. Available from: https://doi.org/10.1016/j.jocd.2017.06.020

    Article  Google Scholar 

  96. Bauer DC, Black DM, Garnero P, et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res [Internet]. 2004;19(8):1250–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15231011

    Article  Google Scholar 

  97. Jacques RM, Boonen S, Cosman F, et al. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res [Internet]. 2012;27(8):1627–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22532515

    Article  CAS  Google Scholar 

  98. Bauer DC, Black DM, Bouxsein ML, et al. Foundation for the National Institutes of Health (FNIH) Bone Quality Project. Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Anti-Resorptive Drugs: A Meta-Regression. J Bone Miner Res. 2018 Apr;33(4):634–642.

    Article  CAS  PubMed  Google Scholar 

  99. Bauer DC, Schwartz A, Palermo L, et al. Fracture prediction after discontinuation of 4 to 5 years of alendronate therapy: the FLEX study. JAMA Intern Med [Internet]. 2014;174(7):1126–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24798675

    Article  CAS  Google Scholar 

  100. Garrett G, Sardiwal S, Lamb EJ, Goldsmith DJA. PTH – a particularly tricky hormone: why measure it at all in kidney patients? Clin J Am Soc Nephrol [Internet]. 2013;8(2):299–312. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22403273

    Article  CAS  Google Scholar 

  101. Brown JE, Cook RJ, Major P, et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst [Internet]. 2005;97(1):59–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15632381

    Article  CAS  Google Scholar 

  102. Coleman R, Costa L, Saad F, et al. Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol [Internet]. 2011;80(3):411–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21411334

    Article  Google Scholar 

  103. Demers LM, Costa L, Chinchilli VM, Gaydos L, Curley E, Lipton A. Biochemical markers of bone turnover in patients with metastatic bone disease. Clin Chem [Internet]. 1995;41(10):1489–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7586522

    Article  CAS  Google Scholar 

  104. Lumachi F, Marino F, Fanti G, Chiara GB, Basso SM. Serum N-telopeptide of type I collagen and bone alkaline phosphatase and their relationship in patients with non-small cell lung carcinoma and bone metastases. Preliminary results. Anticancer Res. 2011 Nov;31(11):3879–81.

    Google Scholar 

  105. Lund T, Abildgaard N, Andersen TL, Delaisse J-M, Plesner T. Multiple myeloma: changes in serum C-terminal telopeptide of collagen type I and bone-specific alkaline phosphatase can be used in daily practice to detect imminent osteolysis. Eur J Haematol [Internet]. 2010;84(5):412–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20070853

    Article  CAS  Google Scholar 

  106. Hirsh V, Major PP, Lipton A, et al. Zoledronic acid and survival in patients with metastatic bone disease from lung cancer and elevated markers of osteoclast activity. J Thorac Oncol [Internet]. 2008;3(3):228–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18317064

    Article  Google Scholar 

  107. Lipton A, Cook R, Saad F, et al. Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer [Internet]. 2008;113(1):193–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18459173

    Article  CAS  Google Scholar 

  108. Confavreux CB, Borel O, Lee F, et al. Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int [Internet]. 2012;23(5):1645–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21681611

    Article  CAS  Google Scholar 

  109. Wang J, Pei F, Tu C, Zhang H, Qiu X. Serum bone turnover markers in patients with primary bone tumors. Oncology [Internet]. 2007;72(5–6):338–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18187955

    Article  CAS  Google Scholar 

  110. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int [Internet]. 2010;21(2):331–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19504034

    Article  CAS  Google Scholar 

  111. Garnero P, Jouvenne P, Buchs N, Delmas PD, Miossec P. Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen breakdown products. Bone [Internet]. 1999;24(4):381–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10221550

    Article  CAS  Google Scholar 

  112. Garnero P, Landewé R, Boers M, et al. Association of baseline levels of markers of bone and cartilage degradation with long-term progression of joint damage in patients with early rheumatoid arthritis: the COBRA study. Arthritis Rheum [Internet]. 2002;46(11):2847–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12428224

    Article  CAS  Google Scholar 

  113. Krabben A, Knevel R, Huizinga TWJ, Cavet G, van der Helm-van Mil AHM. Serum pyridinoline levels and prediction of severity of joint destruction in rheumatoid arthritis. J Rheumatol [Internet]. 2013;40(8):1303–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23729802

    Article  CAS  Google Scholar 

  114. Chopin F, Garnero P, le Henanff A, et al. Long-term effects of infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann Rheum Dis [Internet]. 2008;67(3):353–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17644538

    Article  CAS  Google Scholar 

  115. Aschenberg S, Finzel S, Schmidt S, et al. Catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis: a computed tomography study on the role of age, disease duration and bone markers. Arthritis Res Ther [Internet]. 2013;15(3):R62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23710573

    Article  CAS  Google Scholar 

  116. Barnes TC, Daroszewska A, Fraser WD, Bucknall RC. Bone turnover in untreated polymyalgia rheumatica. Rheumatology (Oxford) [Internet]. 2004;43(4):486–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14722347

    Article  CAS  Google Scholar 

  117. Jadon DR, Nightingale AL, McHugh NJ, Lindsay MA, Korendowych E, Sengupta R. Serum soluble bone turnover biomarkers in psoriatic arthritis and psoriatic spondyloarthropathy. J Rheumatol [Internet]. 2015;42(1):21–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25362660

    Article  CAS  Google Scholar 

  118. Whyte MP. Paget’s disease of bone and genetic disorders of RANKL/OPG/RANK/NF-kappaB signaling. Ann N Y Acad Sci [Internet]. 2006;1068:143–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16831914

    Article  CAS  Google Scholar 

  119. Al Nofal AA, Altayar O, BenKhadra K, et al. Bone turnover markers in Paget’s disease of the bone: a systematic review and meta-analysis. Osteoporos Int [Internet]. 2015;26(7):1875–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26037791

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Greenblatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greenblatt, M.B., Tsai, J.N., Wein, M.N. (2020). Biochemical Markers of Bone Turnover. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics