Skip to main content

Advertisement

Log in

Adipose Tissue Dysfunction: Impact on Bone and Osseointegration

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone metabolism may be adversely affected in metabolic diseases such as obesity and metabolic syndrome, which are characterised by weight gain, due to the expansion of adipose tissue deposits. As an important regulator of energy metabolism, adipose tissues synthesise and secrete several key regulatory adipokines that influence a range of metabolic functions. This narrative review outlines the evidence for the mechanisms by which adipose tissue dysfunction may alter bone metabolism prior to the development of frank hyperglycaemia and presents the emerging evidence for the impact of diet-induced expansion of adipose tissue on implant osseointegration. Successful osseointegration requires normal bone cell function, and the expansion of adipose tissue deposits results in dysregulated adipokine production favouring an increase in pro-inflammatory adipokines, contributing to the development of a chronic inflammatory state and insulin resistance. The increase in inflammatory cytokines promotes the growth and differentiation of osteoclasts indirectly through the modulation of osteoblastic RANKL production and directly by reducing osteoclast apoptosis and increased osteoclastic expression of RANK. Conversely, the suppression of osteoblastic regulatory genes results in reduced osteoblast numbers and function contributing to compromised bone turnover. Compromised osseointegration has been established in hyperglycaemia; however, as discussed in this review, it may not be the only driver of altered bone metabolism. The incidence of metabolic disease in the community is rising, patients may present for implant treatment with undiagnosed, underlying changes to bone cell metabolism due to adipose tissue dysmetabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH et al (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81(2):341–354. https://doi.org/10.1093/ajcn.81.2.341

    Article  CAS  PubMed  Google Scholar 

  2. Moayeri A, Mohamadpour M, Mousavi SF, Shirzadpour E, Mohamadpour S, Amraei M (2017) Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag 13:455–468. https://doi.org/10.2147/TCRM.S131945

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pedersen AB, Mehnert F, Johnsen SP, Sorensen HT (2010) Risk of revision of a total hip replacement in patients with diabetes mellitus: a population-based follow up study. J Bone Joint Surg Br 92(7):929–934. https://doi.org/10.1302/0301-620x.92b7.24461

    Article  CAS  PubMed  Google Scholar 

  4. Naujokat H, Kunzendorf B, Wiltfang J (2016) Dental implants and diabetes mellitus—a systematic review. Int J Implant Dent 2(1):5. https://doi.org/10.1186/s40729-016-0038-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chrcanovic B, Albrektsson T, Wennerberg A (2014) Diabetes and oral implant failure: a systematic review. J Dent Res 93(9):859–867. https://doi.org/10.1177/0022034514538820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li X, Gong X, Jiang W (2017) Abdominal obesity and risk of hip fracture: a meta-analysis of prospective studies. Osteoporos Int 28(10):2747–2757. https://doi.org/10.1007/s00198-017-4142-9

    Article  CAS  PubMed  Google Scholar 

  7. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. https://doi.org/10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diascro DD Jr, Vogel RL, Johnson TE, Witherup KM, Pitzenberger SM, Rutledge SJ, Prescott DJ et al (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13(1):96–106. https://doi.org/10.1359/jbmr.1998.13.1.96

    Article  CAS  PubMed  Google Scholar 

  9. Jeon M, Kim J, Kwon S, Kim SW, Park KS, Park S-W, Kim S et al (2003) Activation of peroxisome proliferator-activated receptor-inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278:23270–23277. https://doi.org/10.1074/jbc.M211610200

    Article  CAS  PubMed  Google Scholar 

  10. Lecka-Czernik B, Gubrij I, Moerman EJ, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem 74(3):357–371. https://doi.org/10.1002/(sici)1097-4644(19990901)74:3%3c357::aid-jcb5%3e3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  11. Tian L, Yu X (2015) Lipid metabolism disorders and bone dysfunction–interrelated and mutually regulated (review). Mol Med Report 12(1):783–794. https://doi.org/10.3892/mmr.2015.3472

    Article  CAS  Google Scholar 

  12. World Health Organisation (2020) Health topics/Obesity Switzerland: WHO. http://www.who.int/topics/obesity/en/. Accessed April 2020

  13. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ et al (2005) Diagnosis and management of the metabolic syndrome. Circulation 112(17):2735–2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404

    Article  PubMed  Google Scholar 

  14. Hazem A, Bissada NF, Demko C, Paes A, Lang LA (2016) Comparison of preprosthetic implant complications and failures between obese and nonobese patients. Int J Oral Maxillofac Implants 31(5):1093–1099. https://doi.org/10.11607/jomi.4438

    Article  PubMed  Google Scholar 

  15. Coelho PG, Pippenger B, Tovar N, Koopmans SJ, Plana NM, Graves DT, Engebretson S et al (2018) Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model : a pilot study. J Oral Maxillofac Surg 76(8):1677–1687

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ et al (2016) Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone 85:99–106. https://doi.org/10.1016/j.bone.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li W, Xu P, Wang C, Ha X, Gu Y, Wang Y, Zhang J et al (2017) The effects of fat-induced obesity on bone metabolism in rats. Obes Res Clin Pract 11(4):454–463. https://doi.org/10.1016/j.orcp.2016.12.001

    Article  PubMed  Google Scholar 

  18. Fujita Y, Maki K (2016) High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC Obesity 3(1):1. https://doi.org/10.1186/s40608-016-0082-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keuroghlian A, Barroso AD, Kirikian G, Bezouglaia O, Tintut Y, Tetradis S, Moy P et al (2015) The effects of hyperlipidemia on implant osseointegration in the mouse femur. J Oral Implantol 41(2):e7–e11. https://doi.org/10.1563/aaid-joi-d-13-00105

    Article  PubMed  Google Scholar 

  20. King S, Baptiston Tanaka C, Ross D, Kruzic JJ, Levinger I, Klineberg I, Brennan-Speranza TC (2020) A diet high in fat and fructose adversely affects osseointegration of titanium implants in rats. Clin Exp Dent Res 6(1):107–116. https://doi.org/10.1002/cre2.255

    Article  PubMed  Google Scholar 

  21. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Supplement 3):S131–S139. https://doi.org/10.2215/cjn.04151206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11(5):391–401

    CAS  PubMed  Google Scholar 

  23. Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3:481. https://doi.org/10.1038/bonekey.2013.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105(52):20764–20769. https://doi.org/10.1073/pnas.0805133106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. https://doi.org/10.1016/j.abb.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238. https://doi.org/10.1002/jbmr.320

    Article  CAS  PubMed  Google Scholar 

  27. Hay E, Bouaziz W, Funck-Brentano T, Cohen-Solal M (2016) Sclerostin and bone aging: a mini-review. Gerontology 62(6):618–623. https://doi.org/10.1159/000446278

    Article  CAS  PubMed  Google Scholar 

  28. Katcher HI, Hill AM, Lanford JLG, Yoo JS, Kris-Etherton PM (2009) Lifestyle approaches and dietary strategies to lower LDL-cholesterol and triglycerides and raise HDL-cholesterol. Endocrinol Metab Clin North Am 38(1):45–78. https://doi.org/10.1016/j.ecl.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  29. Frommer K, Schäffler A, Lange U, Rehart S, Steinmeyer J, Rickert M, Müller-Ladner U et al (2017) 02.03| Influence of free fatty acids on osteoblasts and osteoclasts in rheumatic diseases. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2016-211050.3%

    Article  Google Scholar 

  30. Braun T, Zwerina J (2011) Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res Ther. https://doi.org/10.1186/ar3380

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11(1):11–18. https://doi.org/10.1111/j.1467-789X.2009.00623.x

    Article  PubMed  Google Scholar 

  32. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770. https://doi.org/10.1038/27376

    Article  CAS  PubMed  Google Scholar 

  33. Pyrzak B, Ruminska M, Popko K, Demkow U. Adiponectin as a biomarker of the metabolic syndrome in children and adolescents. Eur J Med Res. 2010;15 Suppl 2(Suppl 2):147–51 DOI: https://doi.org/10.1186/2047-783x-15-s2-147.

  34. Kim TY, Schafer AL (2016) Diabetes and bone marrow adiposity. Curr Osteoporos Rep 14(6):337–344. https://doi.org/10.1007/s11914-016-0336-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M (2018) High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res 33(6):1154–1165. https://doi.org/10.1002/jbmr.3408

    Article  CAS  PubMed  Google Scholar 

  36. Elbaz A, Wu X, Rivas D, Gimble JM, Duque G (2010) Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 14(4):982–991. https://doi.org/10.1111/j.1582-4934.2009.00751.x

    Article  CAS  PubMed  Google Scholar 

  37. Coutel X, Delattre J, Marchandise P, Falgayrac G, Béhal H, Kerckhofs G, Penel G et al (2019) Mandibular bone is protected against microarchitectural alterations and bone marrow adipose conversion in ovariectomized rats. Bone 127:343–352. https://doi.org/10.1016/j.bone.2019.06.031

    Article  PubMed  Google Scholar 

  38. Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K et al (2014) IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab 32(4):378–92. https://doi.org/10.1007/s00774-013-0514-1

    Article  CAS  PubMed  Google Scholar 

  39. Zhao B (2017) TNF and bone remodeling. Curr Osteoporos Rep 15(3):126–134. https://doi.org/10.1007/s11914-017-0358-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA (2003) M-CSF, TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 10(10):1165–1177. https://doi.org/10.1038/sj.cdd.4401285

    Article  CAS  PubMed  Google Scholar 

  41. Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15(2):74–80. https://doi.org/10.1016/0167-5699(94)90137-6

    Article  CAS  PubMed  Google Scholar 

  42. Cho I-J, Choi KH, Oh CH, Hwang YC, Jeong I-K, Ahn KJ, Chung H-Y (2016) Effects of C-reactive protein on bone cells. Life Sci 145:1–8. https://doi.org/10.1016/j.lfs.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  43. Jia Z-K, Li H-Y, Liang Y-L, Potempa LA, Ji S-R, Wu Y (2018) Monomeric C-reactive protein binds and neutralizes receptor activator of NF-κB ligand-induced osteoclast differentiation. Front Immunol. https://doi.org/10.3389/fimmu.2018.00234

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dursun E, Tözüm TF (2016) Peri-implant crevicular fluid analysis, enzymes and biomarkers: a systemetic review. J Oral Maxillofac Res 7(3):e9

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fonseca FJPO, Junior MM, Lourenço EJV, de Moraes TD, Figueredo CM (2014) Cytokines expression in saliva and peri-implant crevicular fluid of patients with peri-implant disease. Clin Oral Implant Res 25(2):e68–e72. https://doi.org/10.1111/clr.12052

    Article  Google Scholar 

  46. Rakic M, Lekovic V, Nikolic-Jakoba N, Vojvodic D, Petkovic-Curcin A, Sanz M (2013) Bone loss biomarkers associated with peri-implantitis. A cross-sectional study. Clin Oral Implants Res 24(10):1110–6. https://doi.org/10.1111/j.1600-0501.2012.02518.x

    Article  PubMed  Google Scholar 

  47. Borst SE (2004) The role of TNF-α in insulin resistance. Endocrine 23(2):177–182. https://doi.org/10.1385/ENDO:23:2-3:177

    Article  CAS  PubMed  Google Scholar 

  48. Cefalu WT (2001) Insulin resistance: cellular and clinical concepts. Exp Biol Med (Maywood) 226(1):13–26. https://doi.org/10.1177/153537020122600103

    Article  CAS  Google Scholar 

  49. Wilcox G (2005) Insulin and insulin resistance. Clin Biochem Rev 26(2):19–39

    PubMed  PubMed Central  Google Scholar 

  50. American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Supplement 1):S62–S67. https://doi.org/10.2337/dc09-S062

    Article  PubMed Central  Google Scholar 

  51. Thrailkill KM, Charles K, Lumpkin J, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Endocrinol Metab. 289(5):E735–E745. https://doi.org/10.1152/ajpendo.00159.2005

    Article  CAS  Google Scholar 

  52. Freude T, Braun KF, Haug A, Pscherer S, Stöckle U, Nussler AK, Ehnert S (2012) Hyperinsulinemia reduces osteoblast activity in vitro via upregulation of TGF-β. J Mol Med 90(11):1257–1266. https://doi.org/10.1007/s00109-012-0948-2

    Article  CAS  PubMed  Google Scholar 

  53. Huang S, Kaw M, Harris MT, Ebraheim N, McInerney MF, Najjar SM, Lecka-Czernik B (2010) Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. Bone 46(4):1138–1145. https://doi.org/10.1016/j.bone.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere M-C et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142(2):309–319. https://doi.org/10.1016/j.cell.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koldsland OC, Scheie AA, Aass AM (2010) Prevalence of peri-implantitis related to severity of the disease with different degrees of bone loss. J Periodontol 81(2):231–238. https://doi.org/10.1902/jop.2009.090269

    Article  PubMed  Google Scholar 

  56. Derks J, Tomasi C (2015) Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol 42(S16):S158–S71. https://doi.org/10.1111/jcpe.12334

    Article  PubMed  Google Scholar 

  57. Albrektsson T, Chracanovic B, Jacobsson M, Wennerberg A (2017) Osseointegration of implants-A biological and clinical overview. JSM Dent Surg 2(3):1022

    Google Scholar 

  58. Albrektsson T, Jemt T, Molne J, Tengvall P, Wennerberg A (2019) On inflammation-immunological balance theory-A critical apprehension of disease concepts around implants: Mucositis and marginal bone loss may represent normal conditions and not necessarily a state of disease. Clin Implant Dent Relat Res 21(1):183–189. https://doi.org/10.1111/cid.12711

    Article  PubMed  Google Scholar 

  59. Chrcanovic B, Kisch J, Albrektsson T, Wennerberg A (2017) Analysis of risk factors for cluster behavior of dental implant failures. Clin Implant Dent Relat Res 19(4):632–642. https://doi.org/10.1111/cid.12485

    Article  PubMed  Google Scholar 

  60. King S, Klineberg I, Levinger I, Brennan-Speranza TC (2016) The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement. Arch Osteoporos 11(1):29. https://doi.org/10.1007/s11657-016-0284-1

    Article  PubMed  Google Scholar 

  61. Srinivasan M, Meyer S, Mombelli A, Muller F (2017) Dental implants in the elderly population: a systematic review and meta-analysis. Clin Oral Implants Res 28(8):920–930. https://doi.org/10.1111/clr.12898

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SK was involved in the conception, design and drafting of the manuscript. IK and TBS were involved in conception and revision of the manuscript.

Corresponding author

Correspondence to Shalinie King.

Ethics declarations

Conflict of interest

Shalinie King, Iven Klineberg, and Tara C. Brennan-Speranza declares that they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, S., Klineberg, I. & Brennan-Speranza, T.C. Adipose Tissue Dysfunction: Impact on Bone and Osseointegration. Calcif Tissue Int 110, 32–40 (2022). https://doi.org/10.1007/s00223-021-00899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00899-0

Keywords

Navigation