Skip to main content
Log in

Substrate Strain Mitigates Effects of β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Enzymatic crosslinks stabilize type I collagen and are catalyzed by lysyl oxidase (LOX), a step interrupted through β-aminopropionitrile (BAPN) exposure. This study evaluated dose-dependent effects of BAPN on osteoblast gene expression of type I collagen, LOX, and genes associated with crosslink formation. The second objective was to characterize collagen produced in vitro after exposure to BAPN, and to explore changes to collagen properties under continuous cyclical substrate strain. To evaluate dose-dependent effects, osteoblasts were exposed to a range of BAPN dosages (0–10 mM) for gene expression analysis and cell proliferation. Results showed significant upregulation of BMP-1, POST, and COL1A1 and change in cell proliferation. Results also showed that while the gene encoding LOX was unaffected by BAPN treatment, other genes related to LOX activation and matrix production were upregulated. For the loading study, the combined effects of BAPN and mechanical loading were assessed. Gene expression was quantified, atomic force microscopy was used to extract elastic properties of the collagen matrix, and Fourier Transform infrared spectroscopy was used to assess collagen secondary structure for enzymatic crosslinking analysis. BAPN upregulated BMP-1 in static samples and BAPN combined with mechanical loading downregulated LOX when compared to control-static samples. Results showed a higher indentation modulus in BAPN-loaded samples compared to control-loaded samples. Loading increased the mature-to-immature crosslink ratios in control samples, and BAPN increased the height ratio in static samples. In summary, effects of BAPN (upregulation of genes involved in crosslinking, mature/immature crosslinking ratios, upward trend in collagen elasticity) were mitigated by mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burr DB, Allen MR (2013) Basic and applied bone biology, 1st edn. Elsevier, San Diego

    Google Scholar 

  2. Boskey AL, Wright T, Blank R (1999) Collagen and bone strength. J Bone Miner Res 14:330–335

    Article  CAS  Google Scholar 

  3. Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31:8–11. https://doi.org/10.1016/S8756-3282(02)00815-3

    Article  PubMed  CAS  Google Scholar 

  4. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336. https://doi.org/10.1007/s00198-005-2035-9

    Article  PubMed  CAS  Google Scholar 

  5. Avery NC, Sims TJ, Bailey AJ (2009) Quantitative determination of collagen cross-links. Methods Mol Niol 522:103–121. https://doi.org/10.1007/978-1-59745-413-1_6

    Article  CAS  Google Scholar 

  6. Eyre DR, Paz M, Gallop P (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748. https://doi.org/10.1146/annurev.bi.53.070184.003441

    Article  PubMed  CAS  Google Scholar 

  7. Eyre DR, Wu J-J (2005) Collagen Cross-Links. Top Curr Chem 247:207–229. https://doi.org/10.1007/b103828

    Article  CAS  Google Scholar 

  8. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214. https://doi.org/10.1007/s00198-009-1066-z

    Article  PubMed  CAS  Google Scholar 

  9. Dasler W (1954) Isolation of toxic crystals from sweet peas (Lathyrus odoratus). Science 120:307–308

    Article  CAS  Google Scholar 

  10. Nimni ME (1977) Mechanism of inhibition of collagen crosslinking by penicillamine. Proc R Soc Med 70(Suppl 3):65–72

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Peng J, Jiang Z, Qin G, Huang Q, Li Y, Jiao Z, Zhang F, Li Z, Zhang J, Lu Y, Liu X, Liu J (2007) Impact of activity space on the reproductive behaviour of giant panda (Ailuropoda melanoleuca) in captivity. Appl Anim Behav Sci 104:151–161. https://doi.org/10.1016/j.applanim.2006.04.029

    Article  Google Scholar 

  12. Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711. https://doi.org/10.1002/jcb.21224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between Periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285:13294–13303. https://doi.org/10.1074/jbc.M109.088864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fogelgren B, Polgár N, Szauter KM, Újfaludi Z, Laczkó R, Fong KS, Csiszar K (2005) Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J Biol Chem 280:24690–24697. https://doi.org/10.1074/jbc.M412979200

    Article  PubMed  CAS  Google Scholar 

  15. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355. https://doi.org/10.1007/s007760050064

    Article  PubMed  CAS  Google Scholar 

  16. Ward DF, Salasznyk RM, Klees RF, Backiel J, Agius P, Bennett K, Boskey A, Plopper GE (2007) Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev 16:467–480. https://doi.org/10.1089/scd.2007.0034

    Article  PubMed  CAS  Google Scholar 

  17. Warden SJ, Galley MR, Hurd AL, Wallace JM, Gallant MA, Richard JS, George LA (2013) Elevated mechanical loading when young provides lifelong benefits to cortical bone properties in female rats independent of a surgically induced menopause. Endocrinology 154:3178–3187. https://doi.org/10.1210/en.2013-1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. McNerny EM, Gong B, Morris MD, Kohn DH (2015) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:455–464. https://doi.org/10.1002/jbmr.2356

    Article  PubMed  CAS  Google Scholar 

  19. Hammond MA, Wallace JM (2015) Exercise prevents β-aminopropionitrile-induced morphological changes to type I collagen in murine bone. Bonekey Rep 4:645. https://doi.org/10.1038/bonekey.2015.12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Canelón SP, Wallace JM (2016) β-Aminopropionitrile-induced reduction in enzymatic crosslinking causes in vitro changes in collagen morphology and molecular composition. PLoS ONE 11:1–13. https://doi.org/10.1371/journal.pone.0166392

    Article  CAS  Google Scholar 

  21. Fernandes H (2009) The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng A 15:3857–3867

    Article  CAS  Google Scholar 

  22. Thaler R, Spitzer S, Rumpler M, Fratzl-Zelman N, Klaushofer K, Paschalis E, Varga F (2010) Differential effects of homocysteine and beta aminopropionitrile on preosteoblastic MC3T3-E1 cells. Bone 46:703–709. https://doi.org/10.1016/j.bone.2009.10.038

    Article  PubMed  CAS  Google Scholar 

  23. Turecek C, Fratzl-Zelman N, Rumpler M, Buchinger B, Spitzer S, Zoehrer R, Durchschlag E, Klaushofer K, Paschalis E, Varga F (2008) Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int 82:392–400. https://doi.org/10.1007/s00223-008-9136-3

    Article  PubMed  CAS  Google Scholar 

  24. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81. https://doi.org/10.1016/S0165-022X(00)00129-9

    Article  PubMed  CAS  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45e-45. https://doi.org/10.1093/nar/29.9.e45

    Article  Google Scholar 

  26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:36e-36. https://doi.org/10.1093/nar/30.9.e36

    Article  Google Scholar 

  27. Vande Geest JP, Di Martino ES, Vorp DA (2004) An analysis of the complete strain field within Flexercell(TM) membranes. J Biomech 37:1923–1928. https://doi.org/10.1016/j.jbiomech.2004.02.022

    Article  PubMed  Google Scholar 

  28. Yang H, Yang S, Kong J, Dong A, Yu S (2015) Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 10:382–396. https://doi.org/10.1038/nprot.2015.024

    Article  PubMed  CAS  Google Scholar 

  29. Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308. https://doi.org/10.1021/bi00465a022

    Article  PubMed  CAS  Google Scholar 

  30. Paschalis E, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821

    Article  PubMed  CAS  Google Scholar 

  31. Paschalis E, Gamsjaeger S, Tatakis D, Hassler N, Robins S, Klaushofer K (2014) Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int 96:18–29. https://doi.org/10.1007/s00223-014-9933-9

    Article  PubMed  CAS  Google Scholar 

  32. Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM (2012) Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 180:428–438. https://doi.org/10.1016/j.jsb.2012.09.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692. https://doi.org/10.1002/jbmr.5650070613

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the IU School of Medicine Department of Anatomy & Cell Biology, particularly Dr. William Thopmson, for providing access to the Flexcell system and laboratory space, as well as Donna Roskowski in the IUPUI Department of Chemistry and Chemical Biology for providing access to the Nicolet iN 10 infrared microscope.

Funding

This work was supported by funding from the National Institutes of Health (AR072609, AR067221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Wallace.

Ethics declarations

Conflict of interest

Silvia P. Canelón, Joseph M. Wallace have stated that they have no conflicts of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canelón, S.P., Wallace, J.M. Substrate Strain Mitigates Effects of β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking. Calcif Tissue Int 105, 660–669 (2019). https://doi.org/10.1007/s00223-019-00603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00603-3

Keywords

Navigation