Skip to main content

Advertisement

Log in

In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Large bone defects still represent a major burden in orthopedics, requiring bone-graft implantation to promote the bone repair. Along with autografts that currently represent the gold standard for complicated fracture repair, the bone tissue engineering offers a promising alternative strategy combining bone-graft substitutes with osteoprogenitor cells able to support the bone tissue ingrowth within the implant. Hence, the optimization of cell loading and distribution within osteoconductive scaffolds is mandatory to support a successful bone formation within the scaffold pores. With this purpose, we engineered constructs by seeding and culturing autologous, osteodifferentiated bone marrow mesenchymal stem cells within hydroxyapatite (HA)-based grafts by means of a perfusion bioreactor to enhance the in vivo implant-bone osseointegration in an ovine model. Specifically, we compared the engineered constructs in two different anatomical bone sites, tibia, and femur, compared with cell-free or static cell-loaded scaffolds. After 2 and 4 months, the bone formation and the scaffold osseointegration were assessed by micro-CT and histological analyses. The results demonstrated the capability of the acellular HA-based grafts to determine an implant-bone osseointegration similar to that of statically or dynamically cultured grafts. Our study demonstrated that the tibia is characterized by a lower bone repair capability compared to femur, in which the contribution of transplanted cells is not crucial to enhance the bone-implant osseointegration. Indeed, only in tibia, the dynamic cell-loaded implants performed slightly better than the cell-free or static cell-loaded grafts, indicating that this is a valid approach to sustain the bone deposition and osseointegration in disadvantaged anatomical sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38:75–80

    Article  Google Scholar 

  2. Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. doi:10.1016/j.addr.2015.03.013

    PubMed  Google Scholar 

  3. Kale AA, Cesare PE (1995) Osteoinductive agents. Basic science and clinical applications. Am J Orthop (Belle Mead NJ) 24(10):752–761

    CAS  Google Scholar 

  4. Drosos GI, Touzopoulos P, Ververidis A, Tilkeridis K, Kazakos K (2015) Use of demineralized bone matrix in the extremities. World J Orthop 6(2):269–277

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seebach C, Schulthesis J, Wilhelm K, Frank J, Henrich D (2010) Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behavior of human mesenchymal stem cells (MSC) in vitro. Injury 41:731–738

    Article  PubMed  Google Scholar 

  6. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  8. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gómez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F (2015) Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 70:93–101

    Article  PubMed  Google Scholar 

  10. Foldager C, Bendtsen M, Nygaard JV, Zou X, Bünger C (2009) Differences in early osteogenesis and bone micro-architecture in anterior lumbar interbody fusion with rhBMP-2, equine bone protein extract, and autograft. Bone 45(2):267–273

    Article  CAS  PubMed  Google Scholar 

  11. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):61–71

    CAS  PubMed  Google Scholar 

  12. Rosset P, Deschaseaux F, Layrolle P (2014) Cell therapy for bone repair. Orthop Traumatol Surg Res 100:S107–S112

    Article  CAS  PubMed  Google Scholar 

  13. Moretti M, Arrigoni C, Lovati AB, Talò G (2014) Bioinspired Cell Culture Bioreactors. In: Jabbari E (ed) Handbook of biomimetics and bioinspiration, 1st edn. Word Scientific, Singapore, pp 909–945

    Chapter  Google Scholar 

  14. Komlev VS, Peyrin F, Mastrogiacomo M, Cedola A, Papadimitropoulos A, Rustichelli F, Cancedda R (2006) Kinetics of in vivo bone deposition by bone marrow stromal cells into porous calcium phosphate scaffolds: an X-ray computed microtomography study. Tissue Eng 12(12):3449–3458

    Article  CAS  PubMed  Google Scholar 

  15. Komlev VS, Mastrogiacomo M, Pereira RC, Peyrin F, Rustichelli F, Cancedda R (2010) Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph. Eur Cell Mater 19:136–146

    CAS  PubMed  Google Scholar 

  16. Tortelli F, Tasso R, Loiacono F, Cancedda R (2010) The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials 31(2):242–249

    Article  CAS  PubMed  Google Scholar 

  17. Marcacci M, Kon E, Zaffagnini S, Giardino R, Rocca M, Corsi A, Benvenuti A, Bianco P, Quarto R, Martin I, Muraglia A, Cancedda R (1999) Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int 64(1):83–90

    Article  CAS  PubMed  Google Scholar 

  18. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955

    Article  CAS  PubMed  Google Scholar 

  19. Güven S, Mehrkens A, Saxer F, Schaefer DJ, Martinetti R, Martin I, Scherberich A (2011) Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials 32(25):5801–5809

    Article  PubMed  Google Scholar 

  20. Timmins NE, Scherberich A, Früh JA, Heberer M, Martin I, Jakob M (2007) Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). Tissue Eng 13(8):2021–2028

    Article  CAS  PubMed  Google Scholar 

  21. Braccini A, Wendt D, Jaquiery C, Jakob M, Heberer M, Kenins L, Wodnar-Filipowicz A, Quarto R, Martin I (2005) Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 23(8):1066–1072

    Article  PubMed  Google Scholar 

  22. Cheng M, Moretti M, Engelmayr GC, Freed LE (2009) Insulin-like growth factor-I and slow, bi-directional perfusion enhance the formation of tissue-engineered cardiac grafts. Tissue Eng Part A 15:645–653

    Article  CAS  PubMed  Google Scholar 

  23. Valonen PK, Moutos FT, Kusanagi A, Moretti MG, Diekman BO, Welter JF, Caplan AI, Guilak F, Freed LE (2010) In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 31(8):2193–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nuss K, Auer JA, Boos A, von Rechenberg B (2006) An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones. BMC Musculoskelet Disord 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  25. Potes JC, da Costa Reis J, Capela e Silva F, Relvas C, Cabrita AS, Simoes JA (2008) The sheep as an animal model in orthopaedic research. Exp Pathol Health Sci 2(1):29–32

    Google Scholar 

  26. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10

    CAS  PubMed  Google Scholar 

  27. Patel N, Brooks RA, Clarke MT, Lee PM, Rushton N, Gibson IR, Best SM, Bonfield W (2005) In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. J Mater Sci Mater Med 16(5):429–440

    Article  CAS  PubMed  Google Scholar 

  28. Schneider OD, Mohn D, Fuhrer R, Klein K, Kämpf K, Nuss KM, Sidler M, Zlinszky K, von Rechenberg B, Stark WJ (2011) Biocompatibility and bone formation of flexible, cotton wool-like PLGA/Calcium Phosphate nanocomposites in sheep. Open Orthop J 5:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  29. Han D, Han N, Xue F, Zhang P (2015) A novel specialized staging system for cancellous fracture healing, distinct from traditional healing pattern of diaphysis cortical fracture? Int J Clin Exp Med 8(1):1301–1304

    PubMed  PubMed Central  Google Scholar 

  30. Le Guehennec L, Goyenvalle E, Aguado E, Houchmand-Cuny M, Enkel B, Pilet P, Daculsi G, Layrolle P (2005) Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res B Appl Biomater 72(1):69–78

    Article  PubMed  Google Scholar 

  31. An YH, Friedman RJ (1999) Animal models in orthopaedic research. CRC Press, Boca Raton

    Google Scholar 

  32. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–3237

    Article  CAS  PubMed  Google Scholar 

  33. Bersini S, Gilardi M, Arrigoni C, Talò G, Zamai M, Zagra L, Caiolfa V, Moretti M (2016) Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach. Biomaterials 76:157–172

    Article  CAS  PubMed  Google Scholar 

  34. Bottagisio M, Lovati AB, Lopa S, Moretti M (2015) Osteogenic differentiation of human and ovine bone marrow stromal cells in response to β-glycerophosphate and monosodium phosphate. Cell Reprogr 17(4):235–242

    Article  CAS  Google Scholar 

  35. Lopa S, Colombini A, Stanco D, de Girolamo L, Sansone V, Moretti M (2014) Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment. Eur Cell Mater 27:298–311

    CAS  PubMed  Google Scholar 

  36. Martini L, Fini M, Giavaresi G, Giardino R (2001) Sheep model in orthopedic research: a literature review. Comp Med 51:292–299

    CAS  PubMed  Google Scholar 

  37. Gardel LS, Serra LA, Reis RL, Gomes ME (2014) Use of perfusion bioreactors and large animal models for long bone tissue engineering. Tissue Eng Part B Rev 20(2):126–146

    Article  CAS  PubMed  Google Scholar 

  38. Nafei A, Danielsen CC, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Joint Surg Br 82:910–920

    Article  CAS  PubMed  Google Scholar 

  39. Nafei A, Kabel J, Odgaard A, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part II: architectural and mechanical properties. J Bone Joint Surg Br 82:921–927

    Article  CAS  PubMed  Google Scholar 

  40. Reichert JC, Woodruff MA, Friis T, Quent VM, Gronthos S, Duda GN, Schütz MA, Hutmacher DW (2010) Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. J Tissue Eng Regen Med 4:565–576

    Article  CAS  PubMed  Google Scholar 

  41. Ding M, Odgaard A, Linde F, Hvid I (2002) Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 20:615–621

    Article  PubMed  Google Scholar 

  42. Ludwig SC, Kowalski JM, Boden SD (2000) Osteoinductive bone graft substitutes. Eur Spine J 9(1):119–125

    Article  Google Scholar 

  43. Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19:1419–1423

    Article  CAS  PubMed  Google Scholar 

  44. Demontiero O, Vidal C, Duque G (2012) Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 4(2):61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dias GJ, Mahoney P, Swain M, Kelly RJ, Smith RA, Ali MA (2010) Keratin-hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model. J Biomed Mater Res A 95A(4):1084–1095

    Article  CAS  Google Scholar 

  46. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthening. J Pediatr Orthop 29(6):643–649

    Article  PubMed  Google Scholar 

  47. Emara KM, Diab RA, Emara AK (2015) Recent biological trends in management of fracture non-union. World J Orthop 6(8):623–628

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chistolini P, Ruspantini I, Bianco P, Corsi A, Cancedda R, Quarto R (1999) Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects. J Mater Sci Mater Med 10(12):739–742

    Article  CAS  PubMed  Google Scholar 

  49. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3):328–337

    Article  CAS  PubMed  Google Scholar 

  50. Khan WS, Rayan F, Dhinsa BS, Marsh D (2012) An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cells Int. doi:10.1155/2012/236231

    Google Scholar 

Download references

Acknowledgments

This work was funded by Regione Lombardia with POR FESR 2007-2013 resources (Grant ID: ATP 2009, No. 13396272). The authors thank Finceramica for providing the Engipore® scaffolds.

Author contribution

Guarantor: author#9. Study concept and design: authors #1, #2, #3, #4, #8 and #9. Data acquisition and analyses: authors #1, #2, #3, #4, #5 and #7. Data interpretation: authors #1, #2, #3, #4 and #6. Drafting of the manuscript: authors #1, #2, #3, #4, #5, #6 and #7. Critical revision of the manuscript for important intellectual contents: authors #1, #2, #3, #6, #8 and #9. All authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moretti.

Ethics declarations

Conflict of interest

M Moretti has received research grant from Regione Lombardia with POR FESR 2007–2013 resources (Grant ID: ATP 2009, No. 13396272) and he is inventor of the patent #WO2008098165A2 issued by USPTO.

Human and Animal Rights and Informed Consent

This article does not contain studies with human participants performed by any of the authors. All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Specifically, the Lazzaro Spallanzani Institute Animal Care and Use Committee (IACUC) approved the whole study. Animals and their care were handled in compliance with institutional guidelines as defined in national (Law 116/92, Authorization n.19/2008-A issued March 6, 2008, by the Italian Ministry of Health) and international laws and policies (EEC Council Directive 86/609, OJ L 358. 1, December 12, 1987; Standards for the Care and Use of Laboratory Animals—UCLA, U. S. National Research Council, Statement of Compliance A5023-01, November 6, 1998). The animals were housed at the facilities of the Lazzaro Spallanzani Institute according international standards. A certified veterinarian—responsible for health monitoring, animal welfare supervision, experimental protocols and procedure revision—regularly checked animals. All procedures on animals performed in this study were in accordance with the ethical standards.

Additional information

S. Lopa and C. Recordati have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovati, A.B., Lopa, S., Recordati, C. et al. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model. Calcif Tissue Int 99, 209–223 (2016). https://doi.org/10.1007/s00223-016-0140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0140-8

Keywords

Navigation