Skip to main content

Advertisement

Log in

Evaluation of Bone Mineral Density Loss in Morbidly Obese Women After Gastric Bypass: 3-Year Follow-Up

  • Clinical Report
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Studies that evaluate the influence of gastric bypass (RYGP) on bone mass are limited to short-term follow-up. We analysed changes in bone mineral density (BMD) three years after surgery and evaluated the main determinants of the development of bone disease. Prospective study of 59 morbidly obese white women aged 46 ± 8 years. BMD scanning using DEXA and plasma determinations of calcium, parathyroid hormone, 25-hydroxyvitamin D and insulin-like growth factor-I were made prior, at 12 months and 3 years after surgery. In the first postoperative year BMD decreased at femoral neck (FN) 10.2 % and in the lumbar spine (LS) 3.2 %, in the third year it additionally decreased 2.7 % and 3.1 %, respectively. BMD at both sites remained above the values of women of the same age. In the follow-up, 1.7 % developed osteoporosis at FN and 6.8 % at LS. Patients with bone disease were older, the percentage of women with menopause was greater in this group and had lower initial and final values of lean mass. The percentage of BMD loss at FN remained positively associated with the percentage of lean mass loss [β 0.304, p = 0.045], and menopause [β 0.337, p = 0.025]. Major osteoporotic fracture and hip fracture risk was low even in menopausal patients (3.1 % and 0.40 %, respectively). After RYGP menopausal women and those with greater lean mass loss are at higher risk of BMD loss but progression to osteoporosis is uncommon and the risk of fracture is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. De Laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.

    Article  PubMed  Google Scholar 

  2. Ensurd KE, Lipschutz RC, Cauley JA, et al. Body size and hip fracture risk in older women—a prospective study. Am J Med. 1997;103:274–80.

    Article  Google Scholar 

  3. Revilla M, Villa LF, Sanchez-Atrio A, et al. Influence of body mass index on the age-related slope of total and regional bone mineral content. Calcif Tissue Int. 1997;61:134–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ricci TA, Heymsfield SB, Pierson RN, et al. Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr. 2001;73:347–52.

    CAS  PubMed  Google Scholar 

  5. Lean JM, Jagger CJ, Chambers TJ, et al. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Physiol. 1995;268:E318–22.

    CAS  PubMed  Google Scholar 

  6. Cornish J, Callon KE, Reid IR. Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int. 1996;59:492–5.

    CAS  PubMed  Google Scholar 

  7. Cornish J, Callon KE, Cooper GJS, et al. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun. 1995;207:133–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175:405–15.

    Article  CAS  PubMed  Google Scholar 

  9. Gómez-Ambrosi J, Rodríguez A, Catalán V, et al. The bone-adipose axis in obesity and weight loss. Obes Surg. 2008;18:1134–43.

    Article  PubMed  Google Scholar 

  10. Gómez JM, Vilarrasa N, Masdevall C, et al. Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg. 2009;19:345–50.

    Article  PubMed  Google Scholar 

  11. Vilarrasa N, Gómez JM, Masdevall C, et al. Study of the relationship between adiponectin, interleukin-18, ghrelin and bone mineral density in morbidly obese women after gastric bypass. Endocrinol nutr. 2009;56:355–60.

    Article  CAS  PubMed  Google Scholar 

  12. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turn-over and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89:1061–5.

    Article  CAS  PubMed  Google Scholar 

  13. Fleischer J, Stein EM, Bessler M, et al. The decline in hip bone density following gastric bypass surgery is associated with extend of weight loss. J Clin Endocrinol Metab. 2008;93:3735–40.

    Article  CAS  PubMed  Google Scholar 

  14. Carrasco F, Ruz M, Rojas P, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2009;19:41–6.

    Article  PubMed  Google Scholar 

  15. Johnson JM, Maher JW, Samuel I, et al. Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone and vitamin D. J Gastrointest Surg. 2005;9:1106–10.

    Article  PubMed  Google Scholar 

  16. Goode LR, Brolin RE, Chowdhury HA, et al. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res. 2004;12:40–7.

    Article  CAS  PubMed  Google Scholar 

  17. Valderas JP, Velasco S, Solari S, et al. Increase of bone resorption and the parathyroid hormone in postmenopausal women in the long-term after Roux-en-Y Gastric bypass. Obes Surg. 2009;19:1132–8.

    Article  PubMed  Google Scholar 

  18. Mahdy T, Atia S, Farid M, et al. Effect of Roux-en-Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18:1526–31.

    Article  PubMed  Google Scholar 

  19. Vilarrasa N, Gomez JM, Elio I, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19:860–6.

    Article  PubMed  Google Scholar 

  20. De Prisco C, Levine SN. Metabolic bone disease after gastric bypass surgery for obesity. Am J Med Sci. 2005;329:57–61.

    Article  PubMed  Google Scholar 

  21. Hamoui N, Kim K, Anthone G, et al. The significance of elevated levels of parathyroid hormone in patient with morbid obesity before and after surgery. Arch Surg. 2003;138:891–7.

    Article  CAS  PubMed  Google Scholar 

  22. Goldner WS, O’Dorisio TM, Dillon JS, et al. Severe metabolic bone disease as a long-term complication of obesity surgery. Obes Surg. 2002;12:685–92.

    Article  PubMed  Google Scholar 

  23. Slater GH, Ren CF, Siegel N, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55.

    Article  PubMed  Google Scholar 

  24. Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at 6 and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95:159–66.

    Article  CAS  PubMed  Google Scholar 

  25. Kanis JA, Oden A, Johansson H, et al. FRAX and its applications to clinical practice. Bone. 2009;44:734–43.

    Article  PubMed  Google Scholar 

  26. Kanis JA, Mc Closkey E, Johansson H, et al. Development and use of FRAX in osteoporosis. Osteoporos Int. 2010;21 suppl 2:S 407–13.

    Google Scholar 

  27. Capella RF, Capella JF. Reducing early technical complications in gastric by-pass surgery. Obes Surg. 1997;7:149–57.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization. Obesity: preventing and managing the global epidemic. In: Report on a WHO consultation on obesity. WHO/NUT/NCD/98.1. Geneva, Switzerland: World Health Organization; 3–5 June, 1997.

  29. Alonso GC, Curiel MD, Carranza FH, et al. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int. 2000;11:714–20.

    Article  CAS  PubMed  Google Scholar 

  30. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4:368–81.

    Article  CAS  PubMed  Google Scholar 

  31. Villareal DT, Citivelli R, Chines A, et al. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab. 1991;72:628–34.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas MK, Lloyd-Jones DM, Thadhani RI. Hypovitaminosis D in medical inpatients. N Engl J Med. 1998;338:777–83.

    Article  CAS  PubMed  Google Scholar 

  33. Donaldson MG, Cawthon PM, Lui LY, et al. Estimates of the proportion of older white women who would be recommended for pharmacologic treatment by the new US National Osteoporosis Foundation Guidelines. J Bone Miner Res. 2009;24:675–80.

    Article  PubMed  Google Scholar 

  34. Gjesdal CG, Halse JL, Eide GE, et al. Impact of lean mass and fat mass on bone mineral density: The Hordaland Health study. Maturitas. 2008;59:191–200.

    Article  PubMed  Google Scholar 

  35. Rendina D, Gianfrancesco F, De Filippo G, et al. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur J Endocrinol. 2010;163:165–72.

    Article  CAS  PubMed  Google Scholar 

  36. El-Kadre LJ, Rocha PR, de Almeida Tinoco AC. Calcium metabolism in pre- and postmenopausal morbidly obese women at baseline and after laparoscopic Roux-en-Y gastric by-pass. Obes Surg. 2004;14:1062–6.

    Article  PubMed  Google Scholar 

  37. Diniz MF, Diniz MT, Sanches SR, et al. Elevated serum paratohormone after Roux-en-Y gastric by-pass. Obes Surg. 2004;14:1222–6.

    Article  PubMed  Google Scholar 

  38. Youssef Y, Richards WO, Sekhar N, et al. Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg Endosc. 2007;21:1393–6.

    Article  CAS  PubMed  Google Scholar 

  39. Zofkova I. Pathophysiological and clinical importance of insulin-like growth factor-I with respect to bone metabolism. Physiol Res. 2003;52:657–79.

    CAS  PubMed  Google Scholar 

  40. Collins D, Woods A, Herd R, et al. Insulin-like growth factor-I and bone mineral density. Bone. 1998;23:13–6.

    Article  CAS  PubMed  Google Scholar 

  41. Van Loan MD, Johnson HL, Barbieri TF. Effect of weight loss on bone mineral content and bone mineral density in obese women. Am J Clin Nutr. 1998;67:734–8.

    PubMed  Google Scholar 

  42. Tothill P, Hannan WJ, Cowen S, et al. Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change. J Bone Miner Res. 1997;12:1908–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), a project of Instituto de Salud Carlos III, ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Vilarrasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilarrasa, N., San José, P., García, I. et al. Evaluation of Bone Mineral Density Loss in Morbidly Obese Women After Gastric Bypass: 3-Year Follow-Up. OBES SURG 21, 465–472 (2011). https://doi.org/10.1007/s11695-010-0338-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0338-1

Keywords

Navigation