Skip to main content

Advertisement

Log in

Downregulation of Notch Modulators, Tetraspanin 5 and 10, Inhibits Osteoclastogenesis in Vitro

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Genetic studies in human and mice have pinpointed an essential role of Notch signaling in osteoblast and osteoclast differentiation during skeletal development and bone remodeling. However, the factors and pathways regulating Notch activation in bone cells remain largely unknown. In this in vitro study, we have provided evidence that two of the TspanC8 subfamily members of tetraspanins, Tspan-5 and Tspan-10, are up-regulated during osteoclast differentiation and knockdown of their expression by shRNAs dramatically inhibits osteoclastogenesis. Loss of Tspan-5 and Tspan-10 in osteoclast lineage cells results in attenuation of ADAM10 maturation and Notch activation. Therefore, these two tetraspanins play a critical role in osteoclast formation, at least in part, by modulating Notch signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124:991–998

    Article  CAS  PubMed  Google Scholar 

  2. Lazner F, Gowen M, Pavasovic D, Kola I (1999) Osteopetrosis and osteoporosis: two sides of the same coin. Hum Mol Genet 8:1839–1846

    Article  CAS  PubMed  Google Scholar 

  3. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  4. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  CAS  PubMed  Google Scholar 

  5. Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab: TEM 23:582–590

    Article  CAS  PubMed  Google Scholar 

  6. Engin F, Lee B (2010) NOTCHing the bone: insights into multi-functionality. Bone 46:274–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Regan J, Long F (2013) Notch signaling and bone remodeling. Curr Osteoporos Rep 11:126–129

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518

    Article  CAS  PubMed  Google Scholar 

  10. Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305

    Article  CAS  PubMed  Google Scholar 

  12. Christian LM (2012) The ADAM family: insights into Notch proteolysis. Fly 6:30–34

    Article  CAS  PubMed  Google Scholar 

  13. Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    Article  CAS  PubMed  Google Scholar 

  15. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446

    Article  CAS  PubMed  Google Scholar 

  16. Hemler ME (2014) Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer 14:49–60

    Article  CAS  PubMed  Google Scholar 

  17. Bailey RL, Herbert JM, Khan K, Heath VL, Bicknell R, Tomlinson MG (2011) The emerging role of tetraspanin microdomains on endothelial cells. Biochem Soc Trans 39:1667–1673

    Article  CAS  PubMed  Google Scholar 

  18. Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, Schweisguth F, Rubinstein E (2012) TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol 199:481–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dunn CD, Sulis ML, Ferrando AA, Greenwald I (2010) A conserved tetraspanin subfamily promotes Notch signaling in Caenorhabditis elegans and in human cells. Proc Natl Acad Sci USA 107:5907–5912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG (2012) The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 287:39753–39765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ishii M, Iwai K, Koike M, Ohshima S, Kudo-Tanaka E, Ishii T, Mima T, Katada Y, Miyatake K, Uchiyama Y, Saeki Y (2006) RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J Bone Miner Res 21:965–976

    Article  CAS  PubMed  Google Scholar 

  22. Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, Kimura H, Yamane H, Saito Y, Goto H, Yoneda T, Yoshida M, Kumagai T, Osaki T, Hayashi S, Kawase I, Mekada E (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161:945–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Iwai K, Ishii M, Ohshima S, Miyatake K, Saeki Y (2007) Expression and function of transmembrane-4 superfamily (tetraspanin) proteins in osteoclasts: reciprocal roles of Tspan-5 and NET-6 during osteoclastogenesis. Allergol Int 56:457–463

    Article  CAS  PubMed  Google Scholar 

  24. Zhou J, Ye S, Fujiwara T, Manolagas SC, Zhao H (2013) Steap4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/reactive oxygen species (ROS) levels and cAMP response element-binding protein (CREB) activation. J Biol Chem 288:30064–30074

    Article  CAS  PubMed  Google Scholar 

  25. Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488

    Article  CAS  PubMed  Google Scholar 

  26. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science (New York, N.Y.) 257:88–91

    Article  CAS  Google Scholar 

  27. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  28. Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H (2011) LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS ONE 6:e27285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Verrier S, Hogan A, McKie N, Horton M (2004) ADAM gene expression and regulation during human osteoclast formation. Bone 35:34–46

    Article  CAS  PubMed  Google Scholar 

  30. Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154:623–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234

    Article  CAS  PubMed  Google Scholar 

  33. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Stavros C Manolagas and Charles A Obrien for their critic of the manuscript prior to submission and Erin Hogan for her support in microscopic analysis. This work was supported by National Institutes of Health Grants AR062012 and P01 AG13918. This work was also supported by the University of Arkansas for Medical Sciences Tobacco Settlement Funds provided by the Arkansas Biosciences Institute.

Human and Animal Rights and Informed Consent

The usage and handling of mice were approved by UAMS Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Zhao.

Additional information

Jian Zhou and Toshifumi Fujiwara authors have contributed equally to this study.

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Fujiwara, T., Ye, S. et al. Downregulation of Notch Modulators, Tetraspanin 5 and 10, Inhibits Osteoclastogenesis in Vitro. Calcif Tissue Int 95, 209–217 (2014). https://doi.org/10.1007/s00223-014-9883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9883-2

Keywords

Navigation