Skip to main content

Advertisement

Log in

Downregulation of the Inflammatory Response by CORM-3 Results in Protective Effects in a Model of Postmenopausal Arthritis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

CO-releasing molecules (CORMs) are a new class of drugs able to release small amounts of CO in biological systems. We have shown previously that one of these molecules, CORM-3, exerts anti-inflammatory effects in animal models. The aim of this study was to assess the effects of CORM-3 on bone metabolism in a model of postmenopausal rheumatoid arthritis osteoporosis. Ovariectomy was followed by collagen-induced arthritis in female DBA-1/J mice. Animals showing arthritis on day 22 after immunization were then randomized into control and treatment groups. CORM-3 was administered at 10 mg/kg, intraperitoneally, once a day. Alendronate was administered at 100 μg/kg, orally, once a day. On days 36 and 50 after immunization, animals were killed and tissues analyzed. The arthritic score was significantly reduced by CORM-3 but not by alendronate treatment. Histopathological analyses indicated that both compounds reduced cellular infiltration and cartilage degradation. Local bone erosion and reduction in TNFα levels were seen for CORM-3 on day 50 and for alendronate on day 36. Serum levels of COMP, IL-6, MMP-3, CTX-I, alkaline phosphatase, and osteocalcin were decreased by both treatments, whereas TNFα levels were reduced by CORM-3 and TRAP-5b by alendronate. Micro-computed tomographic analysis showed protective effects on trabecular bone, which were more prominent for CORM-3 on day 36 and for alendronate on day 50. Our results suggest that CORMs represent a novel anti-inflammatory strategy to counteract joint bone erosion with partial protective effects on systemic bone loss in postmenopausal rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldring SR, Gravallese EM (2000) Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res 2:33–37

    Article  PubMed  CAS  Google Scholar 

  2. Forsblad DH, Larsen A, Waltbrand E, Kvist G, Mellstrom D, Saxne T, Ohlsson C, Nordborg E, Carlsten H (2003) Radiographic joint destruction in postmenopausal rheumatoid arthritis is strongly associated with generalised osteoporosis. Ann Rheum Dis 62:617–623

    Article  Google Scholar 

  3. Goemaere S, Ackerman C, Goethals K, De Keyser F, Van der Straeten C, Verbruggen G, Mielants H, Veys EM (1990) Onset of symptoms of rheumatoid arthritis in relation to age, sex and menopausal transition. J Rheumatol 17:1620–1622

    PubMed  CAS  Google Scholar 

  4. D’Elia HF, Larsen A, Mattsson LA, Waltbrand E, Kvist G, Mellstrom D, Saxne T, Ohlsson C, Nordborg E, Carlsten H (2003) Influence of hormone replacement therapy on disease progression and bone mineral density in rheumatoid arthritis. J Rheumatol 30:1456–1463

    PubMed  Google Scholar 

  5. Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OH (1990) Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 322:1265–1271

    Article  PubMed  CAS  Google Scholar 

  6. Eggelmeijer F, Papapoulos SE, van Paassen HC, Dijkmans BA, Valkema R, Westedt ML, Landman JO, Pauwels EK, Breedveld FC (1996) Increased bone mass with pamidronate treatment in rheumatoid arthritis: results of a three-year randomized, double-blind trial. Arthritis Rheum 39:396–402

    Article  PubMed  CAS  Google Scholar 

  7. Breuil V, Euller-Ziegler L (2006) Bisphosphonate therapy in rheumatoid arthritis. Joint Bone Spine 73:349–354

    Article  PubMed  CAS  Google Scholar 

  8. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743

    Article  PubMed  CAS  Google Scholar 

  9. Alcaraz MJ, Guillen MI, Ferrandiz ML, Megias J, Motterlini R (2008) Carbon monoxide-releasing molecules: a pharmacological expedient to counteract inflammation. Curr Pharm Des 14:465–472

    Article  PubMed  CAS  Google Scholar 

  10. Ferrándiz ML, Maicas N, Garcia-Arnandis I, Terencio MC, Motterlini R, Devesa I, Joosten LAB, van den Berg WB, Alcaraz MJ (2008) Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann Rheum Dis 67:1211–1217

    Article  PubMed  Google Scholar 

  11. Maicas N, Ferrandiz ML, Devesa I, Motterlini R, Koenders MI, van den Berg WB, Alcaraz MJ (2010) The CO-releasing molecule CORM-3 protects against articular degradation in the K/BxN serum transfer arthritis model. Eur J Pharmacol 634:184–191

    Article  PubMed  CAS  Google Scholar 

  12. Jochems C, Islander U, Erlandsson M, Verdrengh M, Ohlsson C, Carlsten H (2005) Osteoporosis in experimental postmenopausal polyarthritis: the relative contributions of estrogen deficiency and inflammation. Arthritis Res Ther 7:R837–R843

    Article  PubMed  CAS  Google Scholar 

  13. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 93:e2–e8

    Article  PubMed  CAS  Google Scholar 

  14. Kind PR, King EJ (1954) Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol 7:322–326

    Article  PubMed  CAS  Google Scholar 

  15. Feldkamp LA, Davis LC, Krettek C (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  16. Remy E, Thiel E (2002) Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D. Pattern Recognit Lett 23:649–661

    Article  Google Scholar 

  17. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    Article  PubMed  CAS  Google Scholar 

  18. Urquhart P, Rosignoli G, Cooper D, Motterlini R, Perretti M (2007) Carbon monoxide-releasing molecules modulate leukocyte–endothelial interactions under flow. J Pharmacol Exp Ther 321:656–662

    Article  PubMed  CAS  Google Scholar 

  19. Adami S, Bhalla AK, Dorizzi R, Montesanti F, Rosini S, Salvagno G, Lo Cascio V (1987) The acute-phase response after bisphosphonate administration. Calcif Tissue Int 41:326–331

    Article  PubMed  CAS  Google Scholar 

  20. Makkonen N, Salminen A, Rogers MJ, Frith JC, Urtti A, Azhayeva E, Monkkonen J (1999) Contrasting effects of alendronate and clodronate on RAW 264 macrophages: the role of a bisphosphonate metabolite. Eur J Pharm Sci 8:109–118

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura M, Ando T, Abe M, Kumagai K, Endo Y (1996) Contrast between effects of aminobisphosphonates and non-aminobisphosphonates on collagen-induced arthritis in mice. Br J Pharmacol 119:205–212

    PubMed  CAS  Google Scholar 

  22. Deng X, Yu Z, Funayama H, Yamaguchi K, Sasano T, Sugawara S, Endo Y (2007) Histidine decarboxylase–stimulating and inflammatory effects of alendronate in mice: involvement of mevalonate pathway, TNFalpha, macrophages, and T-cells. Int Immunopharmacol 7:152–161

    Article  PubMed  CAS  Google Scholar 

  23. D’Amelio P, Grimaldi A, Cristofaro MA, Ravazzoli M, Molinatti PA, Pescarmona GP, Isaia GC (2010) Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int 21:1741–1750

    Article  PubMed  Google Scholar 

  24. Ribbens C, Porras M, Franchimont N, Kaiser MJ, Jaspar JM, Damas P, Houssiau FA, Malaise MG (2002) Increased matrix metalloproteinase-3 serum levels in rheumatic diseases: relationship with synovitis and steroid treatment. Ann Rheum Dis 61:161–166

    Article  PubMed  CAS  Google Scholar 

  25. Okada Y, Nagase H, Harris ED Jr (1987) Matrix metalloproteinases 1, 2, and 3 from rheumatoid synovial cells are sufficient to destroy joints. J Rheumatol 14(spec no):41–42

    PubMed  CAS  Google Scholar 

  26. Mamehara A, Sugimoto T, Sugiyama D, Morinobu S, Tsuji G, Kawano S, Morinobu A, Kumagai S (2010) Serum matrix metalloproteinase-3 as predictor of joint destruction in rheumatoid arthritis, treated with non-biological disease modifying anti-rheumatic drugs. Kobe J Med Sci 56:E98–E107

    PubMed  CAS  Google Scholar 

  27. Fujikawa K, Kawakami A, Tamai M, Uetani M, Takao S, Arima K, Iwamoto N, Aramaki T, Kawashiri S, Ichinose K, Kamachi M, Nakamura H, Origuchi T, Ida H, Aoyagi K, Eguchi K (2009) High serum cartilage oligomeric matrix protein determines the subset of patients with early-stage rheumatoid arthritis with high serum C-reactive protein, matrix metalloproteinase-3, and MRI-proven bone erosion. J Rheumatol 36:1126–1129

    Article  PubMed  CAS  Google Scholar 

  28. Lehmann HJ, Mouritzen U, Christgau S, Cloos PA, Christiansen C (2002) Effect of bisphosphonates on cartilage turnover assessed with a newly developed assay for collagen type II degradation products. Ann Rheum Dis 61:530–533

    Article  PubMed  CAS  Google Scholar 

  29. Shirai T, Kobayashi M, Nishitani K, Satake T, Kuroki H, Nakagawa Y, Nakamura T (2011) Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J Orthop Res 29:1572–1577

    Article  PubMed  CAS  Google Scholar 

  30. Ralston SH, Hacking L, Willocks L, Bruce F, Pitkeathly DA (1989) Clinical, biochemical, and radiographic effects of aminohydroxypropylidene bisphosphonate treatment in rheumatoid arthritis. Ann Rheum Dis 48:396–399

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Q, Badell IR, Schwarz EM, Boulukos KE, Yao Z, Boyce BF, Xing L (2005) Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression through Ets-2. Arthritis Rheum 52:2708–2718

    Article  PubMed  CAS  Google Scholar 

  32. Kitazawa R, Kimble RB, Vannice JL, Kung VT, Pacifici R (1994) Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest 94:2397–2406

    Article  PubMed  CAS  Google Scholar 

  33. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237

    Article  PubMed  CAS  Google Scholar 

  34. Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 321:1–15

    Article  PubMed  CAS  Google Scholar 

  35. Ochi S, Shinohara M, Sato K, Gober HJ, Koga T, Kodama T, Takai T, Miyasaka N, Takayanagi H (2007) Pathological role of osteoclast costimulation in arthritis-induced bone loss. Proc Natl Acad Sci USA 104:11394–11399

    Article  PubMed  CAS  Google Scholar 

  36. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  PubMed  CAS  Google Scholar 

  37. Axmann R, Bohm C, Kronke G, Zwerina J, Smolen J, Schett G (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60:2747–2756

    Article  PubMed  CAS  Google Scholar 

  38. Song H, Bergstrasser C, Rafat N, Hoger S, Schmidt M, Endres N, Goebeler M, Hillebrands JL, Brigelius-Flohe R, Banning A, Beck G, Loesel R, Yard BA (2009) The carbon monoxide releasing molecule (CORM-3) inhibits expression of vascular cell adhesion molecule-1 and E-selectin independently of haem oxygenase-1 expression. Br J Pharmacol 157:769–780

    Article  PubMed  CAS  Google Scholar 

  39. Wei Y, Chen P, De Bruyn M, Zhang W, Bremer E, Helfrich W (2010) Carbon monoxide–releasing molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats. BMC Gastroenterol 10:42

    Article  PubMed  Google Scholar 

  40. Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88

    PubMed  CAS  Google Scholar 

  41. Cantatore FP, Acquista CA, Pipitone V (1999) Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis treated with alendronate. J Rheumatol 26:2318–2323

    PubMed  CAS  Google Scholar 

  42. Alcaraz MJ, Fernandez P, Guillen MI (2003) Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des 9:2541–2551

    Article  PubMed  CAS  Google Scholar 

  43. Zwerina J, Tzima S, Hayer S, Redlich K, Hoffmann O, Hanslik-Schnabel B, Smolen JS, Kollias G, Schett G (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19:2011–2013

    PubMed  CAS  Google Scholar 

  44. Lin TH, Tang CH, Hung SY, Liu SH, Lin YM, Fu WM, Yang RS (2010) Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 222:757–768

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants SAF2010-22048 and RETICEF RD06/0013/2001 (Ministerio de Economía y Competitividad, ISCIII, FEDER) and Prometeo2010-047 (Generalitat Valenciana). L. I. is the recipient of an FPI fellowship (Ministerio de Economía y Competitividad). The authors thank Prof. Brian Mann for the synthesis of CORM-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Ferrándiz.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibáñez, L., Alcaraz, M.J., Maicas, N. et al. Downregulation of the Inflammatory Response by CORM-3 Results in Protective Effects in a Model of Postmenopausal Arthritis. Calcif Tissue Int 91, 69–80 (2012). https://doi.org/10.1007/s00223-012-9612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9612-7

Keywords

Navigation