Skip to main content

Advertisement

Log in

Forearm Bone Mineral Density in Familial Hypocalciuric Hypercalcemia and Primary Hyperparathyroidism: A Comparative Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Studies have shown that cancellous bone is relatively preserved in primary hyperparathyroidism (PHPT), whereas bone loss is seen in cortical bone. Familial hypocalciuric hypercalcemia (FHH) patients seem to preserve bone mineral in spite of hypercalcemia and often elevated plasma parathyroid hormone (PTH). The objective of this study was to compare total and regional forearm bone mineral density (BMD) in patients with PHPT and FHH and to examine if differences can be used to separate the two disorders. We included 63 FHH, and 121 PHPT patients in a cross-sectional study. We performed dual-energy X-ray absorptiometry scans of the forearm, hip and lumbar spine and measured a number of biochemical variables. PTH patients had significantly lower Z-scores in all parts of the forearm compared to FHH. This was also the case after adjustment for body mass index. When stratifying for age, gender and PTH, T-scores were still significantly lower in PHPT patients than in FHH patients at the total, the mid and the ultradistal forearm, but not at the proximal 1/3 forearm. In a multiple regression analysis BMD Z-score was lower in PHPT compared to FHH at the total forearm, the mid forearm and the ultradistal forearm but not the proximal forearm when adjusting for biochemical variables including PTH, 1,25(OH)2D and Ca2+. These observations support that inactivating mutations in the CASR gene in bone cells in FHH may protect against forearm bone loss. Differences between the two groups in total or regional forearm BMD were inferior to the calcium/creatinine clearance ratio as a diagnostic tool to separate FHH from PHPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hendy GN, D’Souza-Li L, Yang B, Canaff L, Cole DE (2000) Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 16:281–296

    Article  PubMed  CAS  Google Scholar 

  2. Raue F, Haag C, Schulze E, Frank-Raue K (2006) The role of the extracellular calcium-sensing receptor in health and disease. Exp Clin Endocrinol Diabetes 114:397–405

    Article  PubMed  CAS  Google Scholar 

  3. Pidasheva S, D’Souza-Li L, Canaff L, Cole DE, Hendy GN (2004) CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 24:107–111

    Article  PubMed  CAS  Google Scholar 

  4. Nissen PH, Christensen SE, Heickendorff L, Brixen K, Mosekilde L (2007) Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population. J Clin Endocrinol Metab 92:4373–4379

    Article  PubMed  CAS  Google Scholar 

  5. Abugassa S, Nordenstrom J, Jarhult J (1992) Bone mineral density in patients with familial hypocalciuric hypercalcaemia (FHH). Eur J Surg 158:397–402

    PubMed  CAS  Google Scholar 

  6. Law WM Jr, Wahner HW, Heath H 3rd (1984) Bone mineral density and skeletal fractures in familial benign hypercalcemia (hypocalciuric hypercalcemia). Mayo Clin Proc 59:811–815

    PubMed  Google Scholar 

  7. Christensen SE, Nissen PH, Vestergaard P, Heickendorff L, Rejnmark L, Brixen K, Mosekilde L (2009) Skeletal consequences of familial hypocalciuric hypercalcaemia versus primary hyperparathyroidism. Clin Endocrinol (Oxf) 71:798–807

    Article  Google Scholar 

  8. Rubin MR, Bilezikian JP, McMahon DJ, Jacobs T, Shane E, Siris E, Udesky J, Silverberg SJ (2008) The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J Clin Endocrinol Metab 93:3462–3470

    Article  PubMed  CAS  Google Scholar 

  9. Mosekilde L (2008) Primary hyperparathyroidism and the skeleton. Clin Endocrinol (Oxf) 69:1–19

    Article  CAS  Google Scholar 

  10. Dempster DW, Muller R, Zhou H, Kohler T, Shane E, Parisien M, Silverberg SJ, Bilezikian JP (2007) Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 41:19–24

    Article  PubMed  CAS  Google Scholar 

  11. Chen Q, Kaji H, Iu MF, Nomura R, Sowa H, Yamauchi M, Tsukamoto T, Sugimoto T, Chihara K (2003) Effects of an excess and a deficiency of endogenous parathyroid hormone on volumetric bone mineral density and bone geometry determined by peripheral quantitative computed tomography in female subjects. J Clin Endocrinol Metab 88:4655–4658

    Article  PubMed  CAS  Google Scholar 

  12. Chappard C, Houillier P, Paillard M (2001) Bone status in primary hyperparathyroidism. Joint Bone Spine 68:112–119

    Article  PubMed  CAS  Google Scholar 

  13. Christiansen P, Steiniche T, Brixen K, Hessov I, Melsen F, Charles P, Mosekilde L (1997) Primary hyperparathyroidism: biochemical markers and bone mineral density at multiple skeletal sites in Danish patients. Bone 21:93–99

    Article  PubMed  CAS  Google Scholar 

  14. Steiniche T, Christiansen P, Vesterby A, Ullerup R, Hessov I, Mosekilde LE, Melsen F (2000) Primary hyperparathyroidism: bone structure, balance, and remodeling before and 3 years after surgical treatment. Bone 26:535–543

    Article  PubMed  CAS  Google Scholar 

  15. Vestergaard P, Mollerup CL, Frokjaer VG, Christiansen P, Blichert-Toft M, Mosekilde L (2000) Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism. BMJ 321:598–602

    Article  PubMed  CAS  Google Scholar 

  16. Nordenstrom E, Westerdahl J, Lindergard B, Lindblom P, Bergenfelz A (2002) Multifactorial risk profile for bone fractures in primary hyperparathyroidism. World J Surg 26:1463–1467

    Article  PubMed  Google Scholar 

  17. Moosgaard B, Christensen SE, Vestergaard P, Heickendorff L, Christiansen P, Mosekilde L (2009) Vitamin D metabolites and skeletal consequences in primary hyperparathyroidism. Clin Endocrinol (Oxf) 68:707–715

    Article  Google Scholar 

  18. Souberbielle JC, Lawson-Body E, Hammadi B, Sarfati E, Kahan A, Cormier C (2003) The use in clinical practice of parathyroid hormone normative values established in vitamin D-sufficient subjects. J Clin Endocrinol Metab 88:3501–3504

    Article  PubMed  CAS  Google Scholar 

  19. Park SH, Goo JM, Jo CH (2004) Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 5:11–18

    Article  PubMed  Google Scholar 

  20. Chappard C, Roux C, Laugier P, Paillard M, Houillier P (2006) Bone status in primary hyperparathyroidism assessed by regional bone mineral density from the whole body scan and QUS imaging at calcaneus. Joint Bone Spine 73:86–94

    Article  PubMed  Google Scholar 

  21. Parisien M, Silverberg SJ, Shane E, de la Cruz L, Lindsay R, Bilezikian JP, Dempster DW (1990) The histomorphometry of bone in primary hyperparathyroidism: preservation of cancellous bone structure. J Clin Endocrinol Metab 70:930–938

    Article  PubMed  CAS  Google Scholar 

  22. Bilezikian JP, Silverberg SJ, Shane E, Parisien M, Dempster DW (1991) Characterization and evaluation of asymptomatic primary hyperparathyroidism. J Bone Miner Res 6(Suppl 2):S85–S89

    PubMed  Google Scholar 

  23. Silverberg SJ, Shane E, De la Cruz L, Dempster DW, Feldman F, Seldin D, Jacobs TP, Siris ES, Cafferty M, Parisien MV (1989) Skeletal disease in primary hyperparathyroidism. J Bone Miner Res 4:283–291

    Article  PubMed  CAS  Google Scholar 

  24. Vogel M, Hahn M, Delling G (1995) Trabecular bone structure in patients with primary hyperparathyroidism. Virchows Arch 426:127–134

    Article  PubMed  CAS  Google Scholar 

  25. Alfredson H, Nordstrom P, Lorentzon R (1997) Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females. Calcif Tissue Int 60:338–342

    Article  PubMed  CAS  Google Scholar 

  26. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  PubMed  CAS  Google Scholar 

  27. Fourth international conference on bone measurement (1978) [Proceedings]. AJR Am J Roentgenol 131:539–553

    Google Scholar 

  28. Charopoulos I, Tournis S, Trovas G, Raptou P, Kaldrymides P, Skarandavos G, Katsalira K, Lyritis GP (2006) Effect of primary hyperparathyroidism on volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in postmenopausal women. J Clin Endocrinol Metab 91:1748–1753

    Article  PubMed  CAS  Google Scholar 

  29. Bilezikian JP, Rubin M, Silverberg SJ (2006) Asymptomatic primary hyperparathyroidism. Arq Bras Endocrinol Metabol 50:647–656

    Article  PubMed  Google Scholar 

  30. Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, Stampa B, Timm W, Genant HK (2009) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45:110–118

    Article  PubMed  Google Scholar 

  31. Dalle Carbonare L, Ballanti P, Bertoldo F, Valenti MT, Giovanazzi B, Giannini S, Realdi G, Lo Cascio V (2008) Trabecular bone microarchitecture in mild primary hyperparathyroidism. J Endocrinol Invest 31:525–530

    PubMed  CAS  Google Scholar 

  32. Dempster DW, Parisien M, Silverberg SJ, Liang XG, Schnitzer M, Shen V, Shane E, Kimml DB, Recker R, Lindsay R, Bilezikian JP (1999) On the mechanism of cancellous bone preservation in postmenopausal women with mild primary hyperparathyroidism. J Clin Endocrinol Metab 84:1562–1566

    Article  PubMed  CAS  Google Scholar 

  33. Parfitt AM (1976) The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part III of IV parts; PTH and osteoblasts, the relationship between bone turnover and bone loss, and the state of the bones in primary hyperparathyroidism. Metabolism 25:1033–1069

    Article  PubMed  CAS  Google Scholar 

  34. Khosla S (2001) The OPG/RANKL/RANK system [minireview]. Endocrinology 142:5050–5055

    Article  PubMed  CAS  Google Scholar 

  35. Yamaguchi T, Chattopadhyay N, Kifor O, Ye C, Vassilev PM, Sanders JL, Brown EM (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol 280:C382–C393

    PubMed  CAS  Google Scholar 

  36. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, Izumi N, Kawashima H, Ozawa H, Ikeda K, Kameda A, Hakeda Y, Kumegawa M (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245:419–422

    Article  PubMed  CAS  Google Scholar 

  37. Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576

    Article  PubMed  CAS  Google Scholar 

  38. Vestergaard P, Rejnmark L, Mosekilde L (2005) Reduced relative risk of fractures among users of lithium. Calcif Tissue Int 77:1–8

    Article  PubMed  CAS  Google Scholar 

  39. Wilting I, de Vries F, Thio BM, Cooper C, Heerdink ER, Leufkens HG, Nolen WA, Egberts AC, van Staa TP (2007) Lithium use and the risk of fractures. Bone 40:1252–1258

    Article  PubMed  CAS  Google Scholar 

  40. Khosla S, Melton J 3rd (2002) Fracture risk in primary hyperparathyroidism. J Bone Miner Res 17(Suppl 2):N103–N107

    PubMed  Google Scholar 

  41. Khosla S, Melton LJ 3rd, Wermers RA, Crowson CS, O’Fallon W, Riggs B (1999) Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res 14:1700–1707

    Article  PubMed  CAS  Google Scholar 

  42. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  43. Kelly TJ (1990) Bone mineral density reference database for American men and women. J Bone Miner Res 5(Suppl 2):S249

    Google Scholar 

  44. Vestergaard P, Rejnmark L, Mosekilde L (2005) Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int 16:134–141

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Troels Isaksen or Leif Mosekilde.

Additional information

The authors have stated that they have no conflict of interest.

Troels Isaksen and Christian Stoltz Nielsen contributed equally to this study, and both should be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaksen, T., Nielsen, C.S., Christensen, S.E. et al. Forearm Bone Mineral Density in Familial Hypocalciuric Hypercalcemia and Primary Hyperparathyroidism: A Comparative Study. Calcif Tissue Int 89, 285–294 (2011). https://doi.org/10.1007/s00223-011-9517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9517-x

Keywords

Navigation