Skip to main content

Advertisement

Log in

Serum parathyroid hormone is associated with increased cortical porosity of the inner transitional zone at the proximal femur in postmenopausal women: the Tromsø Study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Serum parathyroid hormone (PTH) was associated with increased bone turnover markers and cortical porosity of the inner transitional zone at the proximal femur. These results suggest that PTH through increased intracortical bone turnover leads to trabecularisation of inner cortical bone in postmenopausal women.

Introduction

Vitamin D deficiency leads to secondary hyperparathyroidism and increased risk for fractures, whereas its association with cortical porosity is less clear. We tested (i) whether serum 25-hydroxyvitamin D (25(OH)D) and PTH were associated with cortical porosity and (ii) whether the associations of 25(OH)D) and PTH with fracture risk are dependent on cortical porosity.

Methods

This case-control study included 211 postmenopausal women, 54–94 years old, with prevalent fractures and 232 controls from the Tromsø Study. Serum 25(OH)D, PTH, and bone turnover markers (procollagen type I N-terminal propeptide [PINP] and C-terminal cross-linking telopeptide of type I collagen [CTX]) were measured. Femoral subtrochanteric cortical and trabecular parameters were quantified using computed tomography, and femoral neck areal bone mineral density (FN aBMD) was quantified using dual-energy X-ray absorptiometry.

Results

Compared with controls, fracture cases exhibited reduced serum 25(OH)D and increased PTH, PINP, and CTX, increased femoral subtrochanteric cortical porosity, and reduced cortical thickness and FN aBMD (all, p < 0.05). Serum 25(OH)D was not associated with cortical parameters (all, p > 0.10). PTH was associated with increased PINP, CTX, and cortical porosity of the inner transitional zone and reduced trabecular bone volume/tissue volume and FN aBMD (p ranging from 0.003 to 0.054). Decreasing 25(OH)D and increasing PTH were associated with increased odds for fractures, independent of age, height, weight, calcium supplementation, serum calcium, cortical porosity, and thickness.

Conclusions

These data suggest that serum PTH, not 25(OH)D, is associated with increased intracortical bone turnover resulting in trabecularisation of the inner cortical bone; nevertheless, decreasing 25(OH)D) and increasing PTH are associated with fracture risk, independent of cortical porosity and thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D et al (2001) A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 86:1212–1221

    Article  CAS  Google Scholar 

  2. Parfitt AM, Gallagher J, Heaney RP, Johnston C, Neer R, Whedon GD (1982) Vitamin D and bone health in the elderly. Am J Clin Nutr 36(5 Suppl):1014–1031

    Article  CAS  Google Scholar 

  3. Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    Article  CAS  Google Scholar 

  4. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  CAS  Google Scholar 

  5. Pasco JA, Henry MJ, Kotowicz MA, Sanders KM, Seeman E, Pasco JR et al (2004) Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J Bone Miner Res 19:752–758

    Article  CAS  Google Scholar 

  6. Ooms ME, Lips P, Roos JC, van der Vijgh WJ, Popp-Snijders C, Bezemer PD et al (1995) Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res 10:1177–1184

    Article  CAS  Google Scholar 

  7. Holvik K, Ahmed LA, Forsmo S, Gjesdal CG, Grimnes G, Samuelsen SO et al (2013) Low serum levels of 25-hydroxyvitamin D predict hip fracture in the elderly: a NOREPOS study. J Clin Endocrinol Metab 98:3341–3350

    Article  CAS  Google Scholar 

  8. Cauley JA, LaCroix AZ, Wu L, Horwitz M, Danielson ME, Bauer DC et al (2008) Serum 25-hydroxyvitamin D concentrations and risk for hip fractures. Ann Intern Med 149:242–250

    Article  Google Scholar 

  9. Bischoff-Ferrari HA, Willett WC, Orav EJ, Lips P, Meunier PJ, Lyons RA et al (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367:40–49

    Article  CAS  Google Scholar 

  10. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S et al (1992) Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 327:1637–1642

    Article  CAS  Google Scholar 

  11. Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R (2005) Estimates of optimal vitamin D status. Osteoporos Int 16:713–716

    Article  CAS  Google Scholar 

  12. Ebeling PR (2014) Vitamin D and bone health: epidemiologic studies. Bonekey Rep 3:511

    Article  Google Scholar 

  13. Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244

    Article  Google Scholar 

  14. Cauley JA, Chalhoub D, Kassem AM, Fuleihan GE-H (2014) Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol 10:338–351

    Article  Google Scholar 

  15. Brustad M, Alsaker E, Engelsen O, Aksnes L, Lund E (2004) Vitamin D status of middle-aged women at 65–71 N in relation to dietary intake and exposure to ultraviolet radiation. Public Health Nutr 7:327–335

    CAS  PubMed  Google Scholar 

  16. Engelsen O, Brustad M, Aksnes L, Lund E (2005) Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem Photobiol 81:1287–1290

    Article  CAS  Google Scholar 

  17. Melhus HK, Snellman G, Gedeborg R, Byberg L, Berglund L, Mallmin H et al (2010) Plasma 25-hydroxyvitamin D levels and fracture risk in a community-based cohort of elderly men in Sweden. J Clin Endocrinol Metab 95:2637–2645

    Article  CAS  Google Scholar 

  18. Halfon M, Phan O, Teta D (2015) Vitamin D: a review on its effects on muscle strength, the risk of fall, and frailty. Biomed Res Int 2015:953241

    Article  Google Scholar 

  19. Bala Y, Zebaze R, Ghasem-Zadeh A, Atkinson EJ, Iuliano S, Peterson JM et al (2014) Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res 29:1356–1362

    Article  Google Scholar 

  20. Ahmed L, Shigdel R, Joakimsen R, Eldevik O, Eriksen E, Ghasem-Zadeh A et al (2015) Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures. Osteoporos Int 26:2137–2146

    Article  CAS  Google Scholar 

  21. Bjørnerem Å (2016) The clinical contribution of cortical porosity to fragility fractures. Bonekey Rep 5:846

    Article  Google Scholar 

  22. Sundh D, Mellström D, Nilsson M, Karlsson M, Ohlsson C, Lorentzon M (2015) Increased cortical porosity in older men with fracture. J Bone Miner Res 30:1692–1700

    Article  CAS  Google Scholar 

  23. Shigdel R, Osima M, Ahmed LA, Joakimsen RM, Eriksen EF, Zebaze R et al (2015) Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures. Bone 81:1–6

    Article  Google Scholar 

  24. Shigdel R, Osima M, Lukic M, Ahmed LA, Joakimsen RM, Eriksen EF et al (2016) Determinants of transitional zone area and porosity of the proximal femur quantified in vivo in postmenopausal women. J Bone Miner Res 31:758–766

    Article  CAS  Google Scholar 

  25. Sundh D, Mellström D, Ljunggren Ö, Karlsson M, Ohlsson C, Nilsson M et al (2016) Low serum vitamin D is associated with higher cortical porosity in elderly men. J Intern Med 280:496–508

    Article  CAS  Google Scholar 

  26. Boyd S, Burt L, Sevick L, Hanley D (2015) The relationship between serum 25 (OH) D and bone density and microarchitecture as measured by HR-pQCT. Osteoporos Int 26:2375–2380

    Article  CAS  Google Scholar 

  27. Chaitou A, Boutroy S, Vilayphiou N, Varennes A, Richard M, Blaizot S et al (2011) Association of bone microarchitecture with parathyroid hormone concentration and calcium intake in men: the STRAMBO study. Eur J Endocrinol 165:151–159

    Article  CAS  Google Scholar 

  28. Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njølstad I (2012) Cohort profile: the Tromsø study. Int J Epidemiol 41:961–967

    Article  Google Scholar 

  29. Bjørnerem Å, Ahmed LA, Jørgensen L, Størmer J, Joakimsen RM (2011) Breastfeeding protects against hip fracture in postmenopausal women: the Tromsø study. J Bone Miner Res 26:2843–2850

    Article  Google Scholar 

  30. Shigdel R (2016) Cortical porosity as a target for fracture prevention: the Tromsø study. Thesis/Dissertation ISBN 978 82 7589 496 8

  31. Osima M, Kral R, Borgen TT, Høgestøl IK, Joakimsen RM, Eriksen EF et al (2017) Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity. Bone 97:252–260

    Article  CAS  Google Scholar 

  32. Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E (2013) A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54:8–20

    Article  CAS  Google Scholar 

  33. Zebaze R, Libanati C, McClung MR, Zanchetta JR, Kendler DL, Høiseth A et al (2016) Denosumab reduces cortical porosity of the proximal femoral shaft in postmenopausal women with osteoporosis. J Bone Miner Res 31:1827–1834

    Article  CAS  Google Scholar 

  34. Bjørnerem Å, Ghasem-Zadeh A, Bui M, Wang X, Rantzau C, Nguyen TV et al (2011) Remodeling markers are associated with larger intracortical surface area but smaller trabecular surface area: a twin study. Bone 49:1125–1130

    Article  Google Scholar 

  35. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  36. Zebaze R, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  Google Scholar 

  37. Bala Y, Zebaze R, Seeman E (2015) Role of cortical bone in bone fragility. Curr Opin Rheumatol 27:406–413

    Article  Google Scholar 

  38. Dawson-Hughes B, Dallal GE, Krall EA, Harris S, Sokoll LJ, Falconer G (1991) Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann Intern Med 115:505–512

    Article  CAS  Google Scholar 

  39. Shah S, Chiang C, Sikaris K, Lu Z, Bui M, Zebaze R et al (2017) Serum 25-hydroxyvitamin D insufficiency in search of a bone disease. J Clin Endocrinol Metab 102:2321–2328

    Article  Google Scholar 

  40. Mezquita-Raya P, Muñoz-Torres M, De Dios Luna J, Luna V, Lopez-Rodriguez F, Torres-Vela E et al (2001) Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. J Bone Miner Res 16:1408–1415

    Article  CAS  Google Scholar 

  41. Bischoff-Ferrari HA, Dawson-Hughes B (2016) Vitamin D and fall prevention: an update. In: Weaver CM (ed) Nutritional influences on bone health, 9th edn. Springer, Switzerland, pp 197–205

    Chapter  Google Scholar 

  42. TD V, Wang XF, Wang Q, Cusano NE, Irani D, Silva BC et al (2013) New insights into the effects of primary hyperparathyroidism on the cortical and trabecular compartments of bone. Bone 55:57–63

    Article  Google Scholar 

  43. Barbour KE, Houston DK, Cummings SR, Boudreau R, Prasad T, Sheu Y et al (2012) Calciotropic hormones and the risk of hip and nonspine fractures in older adults: the Health ABC Study. J Bone Miner Res 27:1177–1185

    Article  CAS  Google Scholar 

  44. Zebaze R, Seeman E (2015) Cortical bone: a challenging geography. J Bone Miner Res 30:24–29

    Article  Google Scholar 

  45. Hewitt S, Søvik TT, Aasheim ET, Kristinsson J, Jahnsen J, Birketvedt GS et al (2013) Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes Surg 23:384–390

    Article  Google Scholar 

  46. Devold HM, Sogaard AJ, Tverdal A, Falch JA, Furu K, Meyer HE (2013) Hip fracture and other predictors of anti-osteoporosis drug use in Norway. Osteoporos Int 24:1225–1233

    Article  CAS  Google Scholar 

  47. Hoff M, Skurtveit S, Meyer HE, Langhammer A, Søgaard AJ, Syversen U et al (2015) Use of anti-osteoporotic drugs in central Norway after a forearm fracture. Arch Osteoporos 10:235

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Tromsø Study which provided access to data, staff at the Department of Research at the University Hospital of North Norway (UNN) who recruited women, staff at the Department of Radiology and Department of Radiation, UNN, who scanned the patients and organised the radiation procedures and the CT images, and Strax Corp., Melbourne, which analysed the CT images.

Funding

The North Norwegian Health Authorities funded the study (ID 5645/SFP1002-11, ID 9167/SFP1090-13, ID 9168/SFP1135-13, ID 10295/SFP1206-14, ID 12156/HNF1386-17), but had no role in the design and conduct of the study; in the collection, analyses, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Osima.

Ethics declarations

All participants provided written informed consent; the study was approved by the Regional Committee of Research Ethics and was conducted in accordance with the World Medical Association Declaration of Helsinki.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osima, M., Borgen, T.T., Lukic, M. et al. Serum parathyroid hormone is associated with increased cortical porosity of the inner transitional zone at the proximal femur in postmenopausal women: the Tromsø Study. Osteoporos Int 29, 421–431 (2018). https://doi.org/10.1007/s00198-017-4298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4298-3

Keywords

Navigation