Skip to main content

Advertisement

Log in

Inorganic Phosphate Induces Mammalian Growth Plate Chondrocyte Apoptosis in a Mitochondrial Pathway Involving Nitric Oxide and JNK MAP Kinase

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Chondrocytes in the hypertrophic zone of the growth plate undergo apoptosis during endochondral bone development via mechanisms that involve inorganic phosphate (Pi) and nitric oxide (NO). Recent evidence suggests that Pi-dependent NO production plays a role in apoptosis of cells in the resting zone as well. This study examined the mechanism by which Pi induces NO production and the signaling pathways by which NO mediates its effects on apoptosis in these cells. Pi decreased the number of viable cells based on MTT activity; the number of TUNEL-positive cells and the level of DNA fragmentation were increased, indicating an increase in apoptosis. Blocking NO production using the NO synthase (NOS) inhibitor l-NAME or cells from eNOS−/− mice blocked Pi-induced chondrocyte apoptosis, indicating that NO production is necessary. NO donors NOC-18 and SNOG both induced chondrocyte apoptosis. SNOG also upregulated p53 expression, the Bax/Bcl-2 expression ratio, and cytochrome c release from mitochondria, as well as caspase-3 activity, indicating that NO induces apoptosis via a mitochondrial pathway. Inhibition of JNK, but not of p38 or ERK1/2, MAP kinase was able to block NO-induced apoptosis, indicating that JNK is necessary in this pathway. Pi elevates NO production via eNOS in resting zone chondrocytes, which leads to a mitochondrial apoptosis pathway dependent on JNK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams CS, Shapiro IM (2002) The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. Crit Rev Oral Biol Med 13:465–473

    Article  PubMed  Google Scholar 

  2. Gibson G (1998) Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech 43:191–204

    Article  CAS  PubMed  Google Scholar 

  3. Hatori M, Klatte KJ, Teixeira CC, Shapiro IM (1995) End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes. J Bone Miner Res 10:1960–1968

    Article  CAS  PubMed  Google Scholar 

  4. Ohyama K, Farquharson C, Whitehead CC, Shapiro IM (1997) Further observations on programmed cell death in the epiphyseal growth plate: comparison of normal and dyschondroplastic epiphyses. J Bone Miner Res 12:1647–1656

    Article  CAS  PubMed  Google Scholar 

  5. Mansfield K, Rajpurohit R, Shapiro IM (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol 179:276–286

    Article  CAS  PubMed  Google Scholar 

  6. Mansfield K, Teixeira CC, Adams CS, Shapiro IM (2001) Phosphate ions mediate chondrocyte apoptosis through a plasma membrane transporter mechanism. Bone 28:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Teixeira CC, Mansfield K, Hertkorn C, Ischiropoulos H, Shapiro IM (2001) Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation. Am J Physiol Cell Physiol 281:C833–C839

    CAS  PubMed  Google Scholar 

  8. Rajpurohit R, Mansfield K, Ohyama K, Ewert D, Shapiro IM (1999) Chondrocyte death is linked to development of a mitochondrial membrane permeability transition in the growth plate. J Cell Physiol 179:287–296

    Article  CAS  PubMed  Google Scholar 

  9. Teixeira CC, Costas AP, Nemelivsky Y (2007) Apoptosis of growth plate chondrocytes occurs through a mitochondrial pathway. Angle Orthod 77:129–134

    Article  PubMed  Google Scholar 

  10. Clancy RM, Rediske J, Tang X, Nijher N, Frenkel S, Philips M, Abramson SB (1997) Outside—in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 100:1789–1796

    Article  CAS  PubMed  Google Scholar 

  11. Amin AR, Abramson SB (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 10:263–268

    Article  CAS  PubMed  Google Scholar 

  12. Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146:75–85

    CAS  PubMed  Google Scholar 

  13. van den Berg WB (2001) Lessons from animal models of osteoarthritis. Curr Opin Rheumatol 13:452–456

    Article  PubMed  Google Scholar 

  14. Roach HI (1997) New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J Bone Miner Res 12:795–805

    Article  CAS  PubMed  Google Scholar 

  15. Zhong M, Wike LJ, Ryaby JT, Carney DH, Boyan BD, Schwartz Z (2008) Thrombin peptide TP508 prevents nitric oxide mediated apoptosis in chondrocytes in the endochondral developmental pathway. Biochim Biophys Acta 1783:12–22

    Article  CAS  PubMed  Google Scholar 

  16. Kurnik BR, Huskey M, Hruska KA (1987) 1,25-Dihydroxycholecalciferol stimulates renal phosphate transport by directly altering membrane phosphatidylcholine composition. Biochim Biophys Acta 917:81–85

    CAS  PubMed  Google Scholar 

  17. Lang F (1980) Renal handling of calcium and phosphate. Klin Wochenschr 58:985–1003

    Article  CAS  PubMed  Google Scholar 

  18. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642

    Article  CAS  PubMed  Google Scholar 

  19. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    PubMed  Google Scholar 

  20. Shapiro IM, Boyde A (1984) Microdissection—elemental analysis of the mineralizing growth cartilage of the normal and rachitic chick. Metab Bone Dis Relat Res 5:317–326

    Article  CAS  PubMed  Google Scholar 

  21. Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, Simmons RL, Evans CH (1991) Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 147:3915–3920

    CAS  PubMed  Google Scholar 

  22. Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350

    Article  CAS  PubMed  Google Scholar 

  23. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  CAS  PubMed  Google Scholar 

  24. Stamler JS, Hausladen A (1998) Oxidative modifications in nitrosative stress. Nat Struct Biol 5:247–249

    Article  CAS  PubMed  Google Scholar 

  25. Boyan BD, Schwartz Z, Swain LD, Carnes DL Jr, Zislis T (1988) Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone 9:185–194

    Article  CAS  PubMed  Google Scholar 

  26. Boyan BD, Schwartz Z, Carnes DL Jr, Ramirez V (1988) The effects of vitamin D metabolites on the plasma and matrix vesicle membranes of growth and resting cartilage cells in vitro. Endocrinology 122:2851–2860

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz Z, Schlader DL, Swain LD, Boyan BD (1988) Direct effects of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on growth zone and resting zone chondrocyte membrane alkaline phosphatase and phospholipase-A2 specific activities. Endocrinology 123:2878–2884

    Article  CAS  PubMed  Google Scholar 

  28. Sylvia VL, Schwartz Z, Schuman L, Morgan RT, Mackey S, Gomez R, Boyan BD (1993) Maturation-dependent regulation of protein kinase C activity by vitamin D3 metabolites in chondrocyte cultures. J Cell Physiol 157:271–278

    Article  CAS  PubMed  Google Scholar 

  29. Boyan BD, Sylvia VL, Curry D, Chang Z, Dean DD, Schwartz Z (1998) Arachidonic acid is an autocoid mediator of the differential action of 1,25-(OH)2D3 and 24,25-(OH)2D3 on growth plate chondrocytes. J Cell Physiol 176:516–524

    Article  CAS  PubMed  Google Scholar 

  30. Sylvia VL, Schwartz Z, Del Toro F, DeVeau P, Whetstone R, Hardin RR, Dean DD, Boyan BD (2001) Regulation of phospholipase D (PLD) in growth plate chondrocytes by 24R, 25-(OH)2D3 is dependent on cell maturation state (resting zone cells) and is specific to the PLD2 isoform. Biochim Biophys Acta 1499:209–221

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz Z, Shaked D, Hardin RR, Gruwell S, Dean DD, Sylvia VL, Boyan BD (2003) 1alpha, 25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-beta activity via phospholipase A2-dependent production of lysophospholipid. Steroids 68:423–437

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz Z, Graham EJ, Wang L, Lossdorfer S, Gay I, Johnson-Pais TL, Carnes DL, Sylvia VL, Boyan BD (2005) Phospholipase A2 activating protein (PLAA) is required for 1alpha, 25(OH)2D3 signaling in growth plate chondrocytes. J Cell Physiol 203:54–70

    Article  CAS  PubMed  Google Scholar 

  33. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93:13176–13181

    Article  CAS  PubMed  Google Scholar 

  34. Denison TA, Koch CF, Shapiro IM, Schwartz Z, Boyan BD (2009) Inorganic phosphate modulates responsiveness to 24, 25(OH)2D3 in chondrogenic ATDC5 cells. J Cell Biochem 107:155–162

    Article  CAS  PubMed  Google Scholar 

  35. Grey A, Chen Q, Callon K, Xu X, Reid IR, Cornish J (2002) The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving Gi proteins and phosphatidylinositol-3 kinase. Endocrinology 143:4755–4763

    Article  CAS  PubMed  Google Scholar 

  36. Kasagi N, Gomyo Y, Shirai H, Tsujitani S, Ito H (1994) Apoptotic cell death in human gastric carcinoma: analysis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling. Jpn J Cancer Res 85:939–945

    CAS  PubMed  Google Scholar 

  37. Ji C, Ren F, Ma H, Xu M (2010) The roles of p38MAPK and caspase-3 in DADS-induced apoptosis in human HepG2 cells. J Exp Clin Cancer Res 29:50

    Article  PubMed  Google Scholar 

  38. Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214:11–16

    Article  CAS  PubMed  Google Scholar 

  39. Zhong M, Carney DH, Ryaby JT, Schwartz Z, Boyan BD (2009) Inhibition of phosphate-induced apoptosis in resting zone chondrocytes by thrombin peptide 508. Cells Tissues Organs 189:56–59

    Article  CAS  PubMed  Google Scholar 

  40. McMillan J, Fatehi-Sedeh S, Sylvia VL, Bingham V, Zhong M, Boyan BD, Schwartz Z (2006) Sex-specific regulation of growth plate chondrocytes by estrogen is via multiple MAP kinase signaling pathways. Biochim Biophys Acta 1763:381–392

    Article  CAS  PubMed  Google Scholar 

  41. Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715

    Article  CAS  PubMed  Google Scholar 

  42. Bartek J, Iggo R, Gannon J, Lane DP (1990) Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5:893–899

    CAS  PubMed  Google Scholar 

  43. Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4:371–381

    Article  CAS  PubMed  Google Scholar 

  44. Hurst-Kennedy J, Boyan BD, Schwartz Z (2009) Lysophosphatidic acid signaling promotes proliferation, differentiation, and cell survival in rat growth plate chondrocytes. Biochim Biophys Acta 1793:836–846

    Article  CAS  PubMed  Google Scholar 

  45. Cherng YG, Chang HC, Lin YL, Kuo ML, Chiu WT, Chen RM (2008) Apoptotic insults to human chondrocytes induced by sodium nitroprusside are involved in sequential events, including cytoskeletal remodeling, phosphorylation of mitogen-activated protein kinase kinase kinase-1/c-Jun N-terminal kinase, and Bax-mitochondria-mediated caspase activation. J Orthop Res 26:1018–1026

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Wang Z, Chen J, Wu J (2007) Apoptosis induced by NO via phosphorylation of p38 MAPK that stimulates NF-kappaB, p53 and caspase-3 activation in rabbit articular chondrocytes. Cell Biol Int 31:1027–1035

    Article  CAS  PubMed  Google Scholar 

  47. Strniskova M, Barancik M, Ravingerova T (2002) Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys 21:231–255

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from Children’s Healthcare of Atlanta. The authors thank Ms. Sharon Hyzy for her assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Boyan.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, M., Carney, D.H., Jo, H. et al. Inorganic Phosphate Induces Mammalian Growth Plate Chondrocyte Apoptosis in a Mitochondrial Pathway Involving Nitric Oxide and JNK MAP Kinase. Calcif Tissue Int 88, 96–108 (2011). https://doi.org/10.1007/s00223-010-9433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9433-5

Keywords

Navigation