Skip to main content

Advertisement

Log in

The Effect of LRP5 Polymorphisms on Bone Mineral Density Is Apparent in Childhood

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone mass acquired during childhood is the primary determinant of adult bone mineral density (BMD) and osteoporosis risk. Bone accrual is subject to genetic influences. Activating and inactivating LRP5 gene mutations elicit extreme bone phenotypes, while more common LRP5 polymorphisms are associated with normal variation of BMD. Our aim was to test the hypothesis that LRP5 gene polymorphisms influence bone mass acquisition during childhood. The association between LRP5 gene polymorphisms and bone size and mineralization was examined in 819 unrelated British Caucasian children (n = 429 boys) aged 9 years. Height, weight, pubertal status (where available), total-body and spinal bone area, bone mineral content (BMC), BMD, and area-adjusted BMC (aBMC) were assessed. Dual-energy X-ray absorptiometry (DXA)-gene associations were assessed by linear regression, with adjustment for age, gender, pubertal status, and body size parameters. There were 140, 79, 12, and 2 girls who achieved Tanner stages I-IV, respectively, and 179 and 32 boys who achieved Tanner stages I and II, respectively. The rs2306862 (N740N) coding polymorphism in exon 10 of the LRP5 gene was associated with spinal BMD and aBMC (each P = 0.01) and total-body BMD and aBMC (P = 0.04 and 0.03, respectively). Adjusting for pubertal stage strengthened associations between this polymorphism and spinal BMD and aBMC (P = 0.01 and 0.002, respectively). Individuals homozygous for the T allele had greater spinal BMD and aBMC scores than those homozygous for the C allele. A dose effect was apparent as the mean spinal BMD and aBMC of heterozygous TC individuals were intermediate between those of their TT and CC counterparts. The N740N polymorphism in exon 10 of LRP5 was associated with spinal BMD and aBMC in pre- and early pubertal children. These results indicate that LRP5 influences volumetric bone density in childhood, possibly through effects on trabecular bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen C (2000) Pathogenesis of osteoporosis. Ballieres Clin Endocrinol Metab 14:181–193

    CAS  Google Scholar 

  2. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712

    Article  PubMed  CAS  Google Scholar 

  3. McGuigan F, Murray L, Gallagher A, Davey-Smith G, Neville C, van’t Hof R, Boreham C, Ralston S (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res 17:1273–1279

    Article  PubMed  CAS  Google Scholar 

  4. Magarey A, Boulton T, Chatterton B, Schultz C, Nordin B (1999) Familial and environmental influences on bone growth from 11–17 years. Acta Paediatr 88:1204–1210

    Article  PubMed  CAS  Google Scholar 

  5. Rubin L, Hawker G, Peltekova V, Fielding L, Ridout R, Cole D (1999) Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res 14:633–643

    Article  PubMed  CAS  Google Scholar 

  6. Fujita Y, Katsumata K, Unno A, Tawa T, Tokita A (1999) Factors affecting peak bone density in Japanese women. Calcif Tissue Int 64:107–111

    Article  PubMed  CAS  Google Scholar 

  7. Mora S, Gilsanz V (2003) Establishment of peak bone mass. Endocrinol Metab Clin North Am 32:39–63

    Article  PubMed  Google Scholar 

  8. Javaid M, Cooper C (2002) Prenatal and childhood influences on osteoporosis. Best Pract Res Clin Endocrinol Metab 16:349–367

    Article  PubMed  CAS  Google Scholar 

  9. McGartland C, Robson P, Murray L, Cran G, Savage M, Watkins D, Rooney M, Boreham C (2003) Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts Project. J Bone Miner Res 18:1563–1569

    Article  PubMed  CAS  Google Scholar 

  10. Koziel S (2001) Relationships among tempo of maturation, midparent height, and growth in height of adolescent boys and girls. Am J Hum Biol 13:15–22

    Article  PubMed  CAS  Google Scholar 

  11. Jones G, Nguyen T (2000) Associations between maternal peak bone mass and bone mass in prepubertal male and female children. J Bone Miner Res 15:1998–2004

    Article  PubMed  CAS  Google Scholar 

  12. Guegen R, Jouanny P, Guillemin F, Kuntx C, Pourel J, Siest G (1995) Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 10:2017–2022

    Google Scholar 

  13. Ferrari S, Rizzoli R, Slosman D, Bonjour J-P (1998) Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 83:358–361

    Article  PubMed  CAS  Google Scholar 

  14. Katsumata K, Nishizawa K, Unno A, Fujita Y, Tokita A (2002) Association of gene polymorphisms and bone density in Japanese girls. J Bone Miner Metab 20:164–169

    Article  PubMed  CAS  Google Scholar 

  15. Willing M, Torner J, Burns T, Janz K, Marshall T, Gilmore J, Deschenes S, Warren J, Levy S (2003) Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study. Osteoporos Int 14:650–658

    Article  PubMed  CAS  Google Scholar 

  16. Boyden L, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick M, Wu D, Insogna K, Lifton R (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  PubMed  CAS  Google Scholar 

  17. Little R, Carulli J, Del Mastro R, Dupuis J, Osborne M, Folz C, Manning S, Swain P, Zhao S-C, Eustace B, Lappe M, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald M, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen K, Anisowicz A, Morales A, Lomedico P, Recker S, van Eerdewegh P, Recker R, Johnson M (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19

    Article  PubMed  CAS  Google Scholar 

  18. van Hul E, Gram J, Bollerslev J, van Wesenbeeck L, Mathysen D, Andersen P, Vanhoenacker F, van Hul W (2002) Localisation of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12–13. J Bone Miner Res 17:1111–1117

    Article  PubMed  Google Scholar 

  19. van Wesenbeeck L, Cleiren E, Gram J, Beals R, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman M, de Vernejoul M-C, Bollerslev J, van Hul W (2003) Six novel mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771

    Article  PubMed  Google Scholar 

  20. Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, Peltonen L, Somer H, Hirose T, Dallapiccola B, De Paepe A, Swoboda W, Zabel B, Superti-Furga A, Steinmann B, Brunner H, Jans A, Boles R, Adkins W, van den Boogaard M, Olsen B, Warman M (1996) Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12–13. Am J Hum Genet 59:146–151

    PubMed  CAS  Google Scholar 

  21. Gong Y, Slee R, Fukai N, Rawadi G, Roman-Roman S, Reginato A, Wang H, Cundy T (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  PubMed  CAS  Google Scholar 

  22. Ferrari S, Deutsch S, Choudhoury U, Chevalley T, Bonjour J-P, Dermitzakis E, Rizzoli R, Antonarakis S (2004) Polymorphisms in the low density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size and stature in whites. Am J Hum Genet 74:866–875

    Article  PubMed  CAS  Google Scholar 

  23. Koay M, Woon P-Y, Zhang Y, Miles L, Duncan E, Ralston S, Compston J, Cooper C, Keen R, Langdahl B, McLelland A, O’Riordan J, Pols H, Reid D, Uitterlinden A, Wass J, Brown M (2004) Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 19:1619–1627

    Article  PubMed  CAS  Google Scholar 

  24. Koller DL, Ichikawa S, Johnson ML, Lai D, Xuei X, Edenberg HJ, Conneally PM, Hui SL, Johnston CC, Peacock M, Foroud T, Econs MJ (2005) Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res 20:75–80

    Article  PubMed  CAS  Google Scholar 

  25. Bollerslev J, Wilson SG, Dick IM, Islam FM, Ueland T, Palmer L, Devine A, Prince RL (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36:599–606

    Article  PubMed  CAS  Google Scholar 

  26. Mizuguchi T, Furuta I, Watanabe Y, Tsukamoto K, Tomita H, Tsujihata M, Ohta T, Kishino T, Matsumoto N, Minakami H, Nikawa N, Yoshiura K (2004) LRP5, low density lipoprotein receptor related protein 5, is a determinant for bone mineral density. J Hum Genet 49:80–86

    Article  PubMed  CAS  Google Scholar 

  27. Koh J-M, Jung M, Hong J, Park H, Chang J, Shin H, Kim S-Y, Kim G (2004) Association between bone mineral density and LDL receptor-related protein 5 gene polymorphisms in young Korean men. J Korean Med Sci 19:407–412

    PubMed  CAS  Google Scholar 

  28. Babij P, Zhao W, Small C, Kharode Y, Yaworsky P, Bouxsein M, Reddy P, Bodine P, Robinson J, Bhat B, Marzolf J, Moran R, Bex F (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960–974

    Article  PubMed  CAS  Google Scholar 

  29. Kato M, Patel M, Levasseur R, Lobov I, Chang B-J, Glass D II, Hartmann C, Li L, Hwang T-H, Brayton C, Lang R, Karsenty G, Chan L (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314

    Article  PubMed  CAS  Google Scholar 

  30. Golding J, Pembrey M, Jones R, Team TAS (2001) The Avon Longitudinal Study of Parents and Children (ALSPAC) 1. Study methodology. Paediatr Perinat Epidemiol 15:74–87

    Article  CAS  Google Scholar 

  31. Pembrey M (2004) The Avon Longitudinal Study of Parents and Children (ALSPAC): a resource for genetic epidemiology. Eur J Endocrinol 151(Suppl 3):U125–129

    Article  PubMed  CAS  Google Scholar 

  32. Golding J, Team TAS (2004) The Avon Longitudinal Study of Parents and Children (ALSPAC) – study design and collaborative opportunities. Eur J Endocrinol 151:U119–U123

    Article  PubMed  CAS  Google Scholar 

  33. Tobias JH, Cook DG, Chambers TJ, Dalzell N (1994) A comparison of bone mineral density between Caucasian, Asian and Afro-Caribbean women. Clin Sci (Lond) 87:587–591

    CAS  Google Scholar 

  34. Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR (2005) Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int 16:1731–1741

    Article  PubMed  CAS  Google Scholar 

  35. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    PubMed  CAS  Google Scholar 

  36. Tanner J (1986) Normal growth and techniques of growth assessment. Clin Endocrinol Metab 15:411–451

    Article  PubMed  CAS  Google Scholar 

  37. Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  38. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  PubMed  CAS  Google Scholar 

  39. Zhang ZL, Qin YJ, He JW, Huang QR, Li M, Hu YQ, Liu YJ (2005) Association of polymorphisms in low-density lipoprotein receptor-related protein 5 gene with bone mineral density in postmenopausal Chinese women. Acta Pharmacol Sin 26:1111–1116

    Article  PubMed  CAS  Google Scholar 

  40. Lau HH, Ng MY, Cheung WM, Paterson AD, Sham PC, Luk KD, Chan V, Kung AW (2006) Assessment of linkage and association of 13 genetic loci with bone mineral density. J Bone Miner Metab 24:226–234

    Article  PubMed  CAS  Google Scholar 

  41. Urano T, Shiraki M, Ezura Y, Fujita M, Sekine E, Hoshino S, Hosoi T, Orimo H, Emi M, Ouchi Y, Inoue S (2004) Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J Bone Miner Metab 22:341–345

    Article  PubMed  CAS  Google Scholar 

  42. Koh JM, Jung MH, Hong JS, Park HJ, Chang JS, Shin HD, Kim SY, Kim GS (2004) Association between bone mineral density and LDL receptor-related protein 5 gene polymorphisms in young Korean men. J Korean Med Sci 19:407–412

    Article  PubMed  CAS  Google Scholar 

  43. Mizuguchi T, Furuta I, Watanabe Y, Tsukamoto K, Tomita H, Tsujihata M, Ohta T, Kishino T, Matsumoto N, Minakami H, Niikawa N, Yoshiura K (2004) LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 49:80–86

    Article  PubMed  CAS  Google Scholar 

  44. van Meurs J, Hugens W, Arp P, Bartels C, Ai M, Hofman A, Warman M, Pols H, Uitterlinden A (2003) Association of LRP5 polymorphisms with bone mineral density in elderly men and women. Calcif Tissue Int 72:327

    Google Scholar 

  45. Twells R, Mein C, Payne F, Veijola R, Gilbey M, Bright M, Timms A, Nakagawa Y, Snook H, Nutland S, Rance H, Carr P, Dudbridge F, Cordell H, Cooper J, Tuomilehto-Wolf E, Tuomilehto J, Phillips M, Metzker M, Hess J, Todd J (2003) Linkage and association mapping of the LRP5 locus on chromosome 11q12–13 in type 1 diabetes. Hum Genet 113:99–105

    PubMed  CAS  Google Scholar 

  46. Sundberg M, Gardsell P, Johnell O, Ornstein E, Karlsson M, Sernbo I (2003) Pubertal bone growth in the femoral neck is predominantly characterized by increased bone size and not by increased bone density – a 4-year longitudinal study. Osteoporos Int 714:548–558

    Article  Google Scholar 

  47. Henry Y, Fatayeryi D, Eastell R (2004) Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int 15:263–273

    Article  PubMed  Google Scholar 

  48. Fujino T, Asaba H, Kang M-J, Ikeda Y, Sone H, Takada S, Kim D-H, Ioka R, Ono M, Tomoyori H, Okubo M, Murase T, Kamataki A, Yamamoto J, Magoori K, Takahashi S, Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai J, Yamamoto T (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci USA 100:229–234

    Article  PubMed  CAS  Google Scholar 

  49. Holmen S, Giambernardi T, Zylstra C, Buckner-Berghuis B, Resau J, Hess J, Glatt V, Bouxsein M, Ai M, Warman M, Williams B (2004) Decreased BMD and limb deformities in mice carrying mutations in both LRP5 and LRP6. J Bone Miner Res 19:2033–2040

    Article  PubMed  CAS  Google Scholar 

  50. Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS, Lian JB, Komm BS (2004) The Wnt antagonist secreted Frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 18:1222–1237

    Article  PubMed  CAS  Google Scholar 

  51. Baroncelli G, Saggese G (2000) Critical ages and stages of puberty in the accumulation of spinal and femoral bone mass: the validity of bone mass measurements. Horm Res 54:2–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to all the mothers and children who took part and to the midwives for their cooperation and help in recruitment. The whole ALSPAC Study Team comprises interviewers, computer technicians, laboratory technicians, clerical workers, research scientists, volunteers, and managers who continue to make the study possible. The ALSPAC study could not have been undertaken without the financial support of the Medical Research Council, the Wellcome Trust, UK government departments, medical charities, and others. The ALSPAC study is part of the World Health Organization-initiated European Longitudinal Study of Pregnancy and Childhood. This work was also funded by the Arthritis Research Campaign (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koay, M.A., Tobias, J.H., Leary, S.D. et al. The Effect of LRP5 Polymorphisms on Bone Mineral Density Is Apparent in Childhood. Calcif Tissue Int 81, 1–9 (2007). https://doi.org/10.1007/s00223-007-9024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9024-2

Keywords

Navigation