Skip to main content
Log in

Scanning Electron Microscopic Analysis of the Mineralization of Type I Collagen via a Polymer-Induced Liquid-Precursor (PILP) Process

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We have put forth the hypothesis that collagen is mineralized during bone formation by means of a polymer-induced liquid-precursor (PILP) process, in which a liquid-phase mineral precursor could be drawn into the gaps and grooves of the collagen fibrils by capillary action, and upon solidification, leave the collagenous matrix embedded with nanoscopic crystallites of hydroxyapatite. This hypothesis is based upon our observations of capillarity seen for liquid-phase mineral precursors generated with calcium carbonate. Here, we demonstrate proof-of-concept of this mechanism by mineralizing Cellagen™ sponges (type I reconstituted bovine collagen) in the presence of a liquid-precursor phase to calcium carbonate. Scanning electron microscopy (SEM) was used to examine the mineralized collagen, which in combination with selective etching studies, revealed the extent to which the mineral phase infiltrated the collagenous matrix. A roughly periodic array of disk-like crystals was found to be embedded within the collagen fibers, demonstrating that the mineral phase spans across the diameter of the fibers. Some of the morphological features of the mineralized fibers in our in vitro model system are similar to those seen in natural bone (albeit of a different mineral phase), lending support to our hypothesis that these non-equilibrium morphologies might be generated by a PILP process. SEM provides a different perspective on the morphology of bone, and has been useful here for examining the extent of mineralization in composite structures generated via the PILP process. However, further investigation is needed to examine the nanostructural arrangement of the crystallites embedded within the collagenous matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Veis (1993) ArticleTitleMineral matrix interactions in bone and dentin. J Bone Mine Res 8 S493–S497

    Google Scholar 

  2. JF Vincent (1990) Structural biomaterials. Princeton University Press Princeton

    Google Scholar 

  3. ED Eanes (1990) Physico-chemical principles of biomineralization. A Pecile B De Bernard (Eds) Bone regulatory factors morphology, biochemistry, physiology and pharmacology nato asi series a, life sciences Perseus Publishing Cambridge 302

    Google Scholar 

  4. AS Posner (1987) Bone mineral and the mineralization process. WA Peck (Eds) Bone and mineral, 5th ed. Elsevier Science Publishers Amsterdam 65

    Google Scholar 

  5. RA Robinson (1952) ArticleTitleAn electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone J Sur 34A 389 Occurrence Handle1:CAS:528:DyaG3sXjsFSrsg%3D%3D

    CAS  Google Scholar 

  6. SA Jackson AG Cartwright D Lewis (1978) ArticleTitleMorphology of bone-mineral crystals. Calcif Tissue Res 25 217–222 Occurrence Handle1:CAS:528:DyaE1cXlvFCnsrY%3D Occurrence Handle709402

    CAS  PubMed  Google Scholar 

  7. W Traub T Arad S Weiner (1989) ArticleTitle3-dimensional ordered distribution of crystals in turkey tendon collagen-fibers. Proc National Academy of Sciences USA 86 9822–9826 Occurrence Handle1:STN:280:By%2BD1MbjsFM%3D

    CAS  Google Scholar 

  8. E Johansen HF Parks (1960) ArticleTitleElectron microscopic observations on the 3-dimensional morphology of apatite crystallites of human dentine and bone. J Biophys Biochem Cyto 7 743 Occurrence Handle10.1083/jcb.7.4.743 Occurrence Handle1:CAS:528:DyaF3cXhtlSltLY%3D

    Article  CAS  Google Scholar 

  9. WJ Landis MC Paine MJ Glimcher (1977) ArticleTitleElectron-microscopic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res 59 1–30 Occurrence Handle1:STN:280:CSiC2cvis1w%3D Occurrence Handle66323

    CAS  PubMed  Google Scholar 

  10. DS Bocciare (1970) ArticleTitleMorphology of crystallites in bone. Calcif Tissue Res 5 261 Occurrence Handle5433628

    PubMed  Google Scholar 

  11. ST Weiner W Traub (1991) Organization of crystals in bone. H Nakahara S Suga (Eds) Mechanisms and phylogeny of mineralization in biological systems Springer-Verlag New York 528

    Google Scholar 

  12. M Iijima K Iijima Y Moriwaki Y Kuboki (1994) ArticleTitleOriented growth of octacalcium phosphate crystals on type I collagen fibrils under physiological conditions. Crystal Growth 140 91–99 Occurrence Handle10.1016/0022-0248(94)90501-0 Occurrence Handle1:CAS:528:DyaK2cXktVKjtrs%3D

    Article  CAS  Google Scholar 

  13. M Iijima Y Moriwaki Y Kuboki (1994) ArticleTitleIn vitro crystal growth of octacalcium phosphate on type I collagen fiber. Crystal Growth 137 553–560 Occurrence Handle10.1016/0022-0248(94)90998-9 Occurrence Handle1:CAS:528:DyaK2cXis1Krtrg%3D

    Article  CAS  Google Scholar 

  14. M Iijima Y Moriwaki (1991) ArticleTitleLengthwise and oriented growth of octacalcium phosphate on cation selective membrane in a model system of enamel formation. Crystal Growth 112 571–579 Occurrence Handle10.1016/0022-0248(91)90336-4 Occurrence Handle1:CAS:528:DyaK3MXltFWntLo%3D

    Article  CAS  Google Scholar 

  15. A Bigi M Gandolfi N Roveri G Valdre (1997) ArticleTitleIn vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation. Biomaterials 18 IssueID9 657–665 Occurrence Handle10.1016/S0142-9612(96)00156-1 Occurrence Handle1:CAS:528:DyaK2sXivFyhur4%3D Occurrence Handle9151997

    Article  CAS  PubMed  Google Scholar 

  16. Y Doi T Horiguchi Y Moriwaki H Kitago T Kajimoto Y Iwayama (1996) ArticleTitleFormation of apatite-collagen complexes. Biomed Mater Res 31 43–49 Occurrence Handle10.1002/(SICI)1097-4636(199605)31:1<43::AID-JBM6>3.0.CO;2-Q Occurrence Handle1:CAS:528:DyaK28XisFShtL8%3D

    Article  CAS  Google Scholar 

  17. W Traub T Arad S Weiner (1992) ArticleTitleOrigin of mineral crystal growth in collagen fibrils. Matrix 12 251–255 Occurrence Handle1:CAS:528:DyaK38XmtV2gsr8%3D Occurrence Handle1435508

    CAS  PubMed  Google Scholar 

  18. FB Bagambisa U Joos W Schilli (1993) ArticleTitleA scanning electron-microscope study of the ultrastructural organization of bone mineral. Cells Mater 3 93–102

    Google Scholar 

  19. MJ Glimcher SM Krane (1968) The organization and structure of bone, and the mechanism of calcification. BS Gould (Eds) Treatise on collagen. vol 2. Biology of collagen. Academic Press NY

    Google Scholar 

  20. EP Katz E Wachtel M Yamauichi GL Mechanic (1989) ArticleTitleThe structure of mineralized collagen fibrils. Connect Tissue Res 21 49–159 Occurrence Handle1:STN:280:CCaD1cnns1Y%3D Occurrence Handle5704407

    CAS  PubMed  Google Scholar 

  21. LA Gower DA Tirrell (1998) ArticleTitleCalcium carbonate films and helices grown in solutions of poly(aspartate) J Crystal Growth 191 153–160 Occurrence Handle10.1016/S0022-0248(98)00002-5 Occurrence Handle1:CAS:528:DyaK1cXktFGktrc%3D

    Article  CAS  Google Scholar 

  22. LB Gower DJ Odom (2000) ArticleTitleDeposition of calcium carbonate films by a polymer-induced liquid-precursor (pilp) process. J Crystal Growth 210 719–734 Occurrence Handle10.1016/S0022-0248(99)00749-6 Occurrence Handle1:CAS:528:DC%2BD3cXhslekt7w%3D

    Article  CAS  Google Scholar 

  23. HA Lowenstam S Weiner (1989) On biomineralization. Oxford University Press New York

    Google Scholar 

  24. MJ Olszta DJ Odom EP Douglas LB Gower (2002) ArticleTitleA new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res . .

    Google Scholar 

  25. LA Gower (1999) ArticleTitleMorphological control in biomineralization-is it simpler than we thought? American Chemical Society 217 040–BTEC

    Google Scholar 

  26. Gower LA (1997) The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals. Ph.D. thesis, University of Massachusetts at Amherst

  27. T Elsdale J Bard (1972) ArticleTitleCollagen substrata for studies on cell behavior. J Cell Biol 54 626 Occurrence Handle10.1083/jcb.54.3.626 Occurrence Handle1:CAS:528:DyaE38XkvVClu78%3D Occurrence Handle4339818

    Article  CAS  PubMed  Google Scholar 

  28. HK Kleinman EB McGoodwin SI Rennard GR Martin (1979) ArticleTitlePreparation of collagen substrates for cell attachment-effect of collagen concentration and phosphate buffer. Analyt Biochem 94 308–312 Occurrence Handle1:CAS:528:DyaE1MXhs1Cisbk%3D Occurrence Handle464299

    CAS  PubMed  Google Scholar 

  29. HK Kleinman RJ Klebe GR Martin (1981) ArticleTitleRole of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88 473–485 Occurrence Handle10.1083/jcb.88.3.473 Occurrence Handle1:CAS:528:DyaL3MXhtlKltrg%3D Occurrence Handle7012158

    Article  CAS  PubMed  Google Scholar 

  30. E Bonucci (1992) Role of collagen fibrils in calcification. E Bonucci (Eds) Calcification of biological systems. CRC Press Boca Raton 19–39

    Google Scholar 

  31. JH Bradt M Mertig A Teresiak W Pompe (1999) ArticleTitleBiomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11 2694–2701 Occurrence Handle10.1021/cm991002p Occurrence Handle1:CAS:528:DyaK1MXlslGntL0%3D

    Article  CAS  Google Scholar 

  32. C Du FZ Cui W Zhang QL Feng XD Zhu K de Groot (2000) ArticleTitleFormation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50 518–527 Occurrence Handle10.1002/(SICI)1097-4636(20000615)50:4<518::AID-JBM7>3.0.CO;2-W Occurrence Handle1:CAS:528:DC%2BD3cXislOgs74%3D Occurrence Handle10756310

    Article  CAS  PubMed  Google Scholar 

  33. LW Fisher JD Termine (1985) ArticleTitleNon-collagenous proteins influencing the local mechanism of calcification. Clin Orthop 200 362 Occurrence Handle1:CAS:528:DyaL28XkvFShug%3D%3D Occurrence Handle3905122

    CAS  PubMed  Google Scholar 

  34. P Bianco (1992) Structure and mineralization of bone. E Bonucci (Eds) Calcification in biological systems. CRC Press Boca Raton 243–265

    Google Scholar 

  35. L Addadi S Weiner (1985) ArticleTitleInteractions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82 4110–4114 Occurrence Handle1:CAS:528:DyaL2MXks1ylsrs%3D Occurrence Handle3858868

    CAS  PubMed  Google Scholar 

  36. S Weiner L Addadi (1991) ArticleTitleAcidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci 16 IssueID7 252–256 Occurrence Handle10.1016/0968-0004(91)90098-G Occurrence Handle1:CAS:528:DyaK3MXlslOnurk%3D Occurrence Handle1926334

    Article  CAS  PubMed  Google Scholar 

  37. ME Marsh (1986) ArticleTitleBiomineralization in the presence of calcium-binding phosphoprotein particles. J Exp Biol 239 207–220 Occurrence Handle1:CAS:528:DyaL28XltFagt7k%3D

    CAS  Google Scholar 

  38. MA Crenshaw (1982) Biological mineralization and demineralization. GH Nancollas (Eds) . Springer-Verlag NY 243–258

    Google Scholar 

  39. AP Wheeler CS Sikes (1989) Matrix-crystal interactions in caco3 biomineralization. S Mann J Webb RJP Williams (Eds) Biomineralization-chemical and biochemical perspectives. VCH Publishers . 95–131

    Google Scholar 

  40. JF Burke IV Yannas WC Quinby CC Bondoc WK Jung (1981) ArticleTitleSuccessful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194 413–428 Occurrence Handle1:STN:280:Bi2D383ltlQ%3D Occurrence Handle6792993

    CAS  PubMed  Google Scholar 

  41. G Falini S Fermani M Gazzano A Ripamonti (1997) ArticleTitleBiomimetic crystallization of calcium carbonate polymorphs by means of collagenous matrices. Chem Eur J 3 1807–1814 Occurrence Handle1:CAS:528:DyaK2sXnvV2jtLk%3D

    CAS  Google Scholar 

  42. G Falini S Fermani M Gazzano A Ripamonti (1998) ArticleTitleOriented crystallization of vaterite in collagenous matrices. Chem Eur J 4 1048–1052 Occurrence Handle1:CAS:528:DyaK1cXktV2gtb4%3D

    CAS  Google Scholar 

  43. E Dalas PG Klepetsanis PG Koutsoukos (2000) ArticleTitleCalcium carbonate deposition on cellulose. J Colloid Interface Sci 224 56–62 Occurrence Handle10.1006/jcis.1999.6670 Occurrence Handle1:CAS:528:DC%2BD3cXhsFKisL8%3D Occurrence Handle10708493

    Article  CAS  PubMed  Google Scholar 

  44. G Falini (2000) ArticleTitleCrystallization of calcium carbonates in biologically inspired collagenous matrices. Int J Inorg Mat 2 455–461 Occurrence Handle10.1016/S1466-6049(00)00040-4 Occurrence Handle1:CAS:528:DC%2BD3cXnvF2qt74%3D

    Article  CAS  Google Scholar 

  45. G Falini S Fermani M Gazzano A Ripamonti (2000) ArticleTitlePolymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. J Chem Soc Dalton Trans 39 83–3987

    Google Scholar 

  46. J Kanakis E Dalas (2000) ArticleTitleThe crystallization of vaterite on fibrin. J Crystal Growth 219 277–282 Occurrence Handle10.1016/S0022-0248(00)00623-0 Occurrence Handle1:CAS:528:DC%2BD3cXntF2ju7w%3D

    Article  CAS  Google Scholar 

  47. F Manoli E Dalas (1999) ArticleTitleCalcium carbonate overgrowth on elastin substrate. Crystal Growth 204 369–375 Occurrence Handle10.1016/S0022-0248(99)00175-X Occurrence Handle1:CAS:528:DyaK1MXksleitrk%3D

    Article  CAS  Google Scholar 

  48. C Du FZ Cui XD Zhu KD Groot (1999) ArticleTitleThree-dimensional nano-hap/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 44 IssueID4 407–415 Occurrence Handle10.1002/(SICI)1097-4636(19990315)44:4<407::AID-JBM6>3.0.CO;2-T Occurrence Handle1:CAS:528:DyaK1MXlslKntQ%3D%3D Occurrence Handle10397944

    Article  CAS  PubMed  Google Scholar 

  49. WJ Landis (1995) ArticleTitleThe strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16 533–544 Occurrence Handle10.1016/8756-3282(95)00076-P Occurrence Handle1:CAS:528:DyaK2MXlvFGntr4%3D Occurrence Handle7654469

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Gower.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszta, M., Douglas, E. & Gower, L. Scanning Electron Microscopic Analysis of the Mineralization of Type I Collagen via a Polymer-Induced Liquid-Precursor (PILP) Process . Calcif Tissue Int 72, 583–591 (2003). https://doi.org/10.1007/s00223-002-1032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-002-1032-7

Keywords

Navigation