Skip to main content
Log in

A predicted distribution for Galois groups of maximal unramified extensions

  • Published:
Inventiones mathematicae Aims and scope

A Publisher Correction to this article was published on 22 May 2024

This article has been updated

Abstract

We consider the distribution of the Galois groups \(\operatorname {Gal}(K^{\operatorname{un}}/K)\) of maximal unramified extensions as \(K\) ranges over \(\Gamma \)-extensions of ℚ or \({{\mathbb{F}}}_{q}(t)\). We prove two properties of \(\operatorname {Gal}(K^{\operatorname{un}}/K)\) coming from number theory, which we use as motivation to build a probability distribution on profinite groups with these properties. In Part I, we build such a distribution as a limit of distributions on \(n\)-generated profinite groups. In Part II, we prove as \(q\rightarrow \infty \), agreement of \(\operatorname {Gal}(K^{\operatorname{un}}/K)\) as \(K\) varies over totally real \(\Gamma \)-extensions of \({{\mathbb{F}}}_{q}(t)\) with our distribution from Part I, in the moments that are relatively prime to \(q(q-1)|\Gamma |\). In particular, we prove for every finite group \(\Gamma \), in the \(q\rightarrow \infty \) limit, the prime-to-\(q(q-1)|\Gamma |\)-moments of the distribution of class groups of totally real \(\Gamma \)-extensions of \({{\mathbb{F}}}_{q}(t)\) agree with the prediction of the Cohen–Lenstra–Martinet heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Achter, J.D.: The distribution of class groups of function fields. J. Pure Appl. Algebra 204(2), 316–333 (2006)

    MathSciNet  Google Scholar 

  2. Alberts, B.: Cohen-Lenstra moments for some nonabelian groups. J. Théor. Nr. Bordx. 32(3), 631–664 (2020)

    MathSciNet  Google Scholar 

  3. Alberts, B., Klys, J.: The distribution of \(H_{8}\)-extensions of quadratic fields. Int. Math. Res. Not. 2, 1508–1572 (2021)

    Google Scholar 

  4. Artin, M.: Algebraization of formal moduli: II. Existence of modifications. Ann. Math. (2) 91, 88–135 (1970)

    MathSciNet  Google Scholar 

  5. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie Des Topos et Cohomologie Étale Des Schémas. Tome 3. In: Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, vol. 305. Springer, Berlin (1973)

    Google Scholar 

  6. Bartel, A., Lenstra, H.W. Jr.: On class groups of random number fields. Proc. Lond. Math. Soc. (3) 121(4), 927–953 (2020)

    MathSciNet  Google Scholar 

  7. Bertin, J., Romagny, M.: Champs de Hurwitz. Mém. Soc. Math. Fr. 125–126, 219 (2011)

    MathSciNet  Google Scholar 

  8. Besche, H.U.: SmallGrp - a GAP package, Version 1.5.1. https://www.gap-system.org/Packages/smallgrp.html (2002)

  9. Bhargava, M.: The density of discriminants of quartic rings and fields. Ann. Math. 162(2), 1031–1063 (2005)

    MathSciNet  Google Scholar 

  10. Bhargava, M.: The geometric sieve and the density of squarefree values of invariant polynomials (2014). arXiv:1402.0031 [math]

  11. Bhargava, M., Kane, D.M., Lenstra, H.W. Jr., Poonen, B., Rains, E.: Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves. Camb. J. Math. 3(3), 275–321 (2015)

    MathSciNet  Google Scholar 

  12. Bhargava, M., Shankar, A., Wang, X.: Squarefree values of polynomial discriminants I. Invent. Math. 228(3), 1037–1073 (2022)

    MathSciNet  Google Scholar 

  13. Boston, N.: \(p\)-adic Galois representations and pro-\(p\) Galois groups. In: du Sautoy, M., Segal, D., Shalev, A. (eds.) New Horizons in Pro-p Groups, pp. 329–348. Birkhäuser, Boston (2000)

    Google Scholar 

  14. Boston, N., Wood, M.M.: Non-Abelian Cohen–Lenstra heuristics over function fields. Compos. Math. 153(7), 1372–1390 (2017)

    MathSciNet  Google Scholar 

  15. Boston, N., Bush, M.R., Hajir, F.: Heuristics for \(p\)-class towers of imaginary quadratic fields. Math. Ann. 368(1–2), 633–669 (2017)

    MathSciNet  Google Scholar 

  16. Boston, N., Bush, M.R., Hajir, F.: Heuristics for \(p\)-class towers of real quadratic fields. J. Inst. Math. Jussieu 20(4), 1429–1452 (2021)

    MathSciNet  Google Scholar 

  17. Brumer, A.: Ramification and class towers of number fields. Mich. Math. J. 12, 129–131 (1965)

    MathSciNet  Google Scholar 

  18. Cohen, H., Lenstra, H.W. Jr.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout 1983, Noordwijkerhout, 1983. Lecture Notes in Math., vol. 1068, pp. 33–62. Springer, Berlin (1984)

    Google Scholar 

  19. Cohen, H., Martinet, J.: Class groups of number fields: numerical heuristics. Math. Comput. 48(177), 123–137 (1987)

    MathSciNet  Google Scholar 

  20. Cohen, H., Martinet, J.: Étude heuristique des groupes de classes des corps de nombres. J. Reine Angew. Math. 404, 39–76 (1990)

    MathSciNet  Google Scholar 

  21. Datskovsky, B., Wright, D.J.: Density of discriminants of cubic extensions. J. Reine Angew. Math. 386, 116–138 (1988)

    MathSciNet  Google Scholar 

  22. Davenport, H.: On a principle of Lipschitz. J. Lond. Math. Soc. 26, 179–183 (1951)

    MathSciNet  Google Scholar 

  23. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields. II. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 322(1551), 405–420 (1971)

    MathSciNet  Google Scholar 

  24. Deligne, P.: La conjecture de Weil. II. Publ. Math. IHÉS 52, 137–252 (1980)

    MathSciNet  Google Scholar 

  25. Dummit, D.S., Voight, J.: The 2-Selmer group of a number field and heuristics for narrow class groups and signature ranks of units. Proc. Lond. Math. Soc. (3) 117(4), 682–726 (2018)

    MathSciNet  Google Scholar 

  26. Ellenberg, J.S., Venkatesh, A.: Counting extensions of function fields with bounded discriminant and specified Galois group. In: Geometric Methods in Algebra and Number Theory. Progr. Math., vol. 235, pp. 151–168. Birkhäuser, Boston (2005)

    Google Scholar 

  27. Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields. Ann. Math. (2) 183(3), 729–786 (2016)

    MathSciNet  Google Scholar 

  28. Fontaine, J.-M., Mazur, B.: Geometric Galois representations. In: Elliptic Curves, Modular Forms, & Fermat’s Last Theorem (Hong Kong, 1993) Ser, Number Theory, I, pp. 41–78. Int. Press, Cambridge (1995)

    Google Scholar 

  29. Fouvry, É., Klüners, J.: On the 4-rank of class groups of quadratic number fields. Invent. Math. 167(3), 455–513 (2006)

    MathSciNet  Google Scholar 

  30. Fried, M.D., Jarden, M.: Field arithmetic. In: Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 3rd edn, vol. 11. Springer, Berlin (2008)

    Google Scholar 

  31. Fried, M.D., Völklein, H.: The inverse Galois problem and rational points on moduli spaces. Math. Ann. 290(1), 771–800 (1991)

    MathSciNet  Google Scholar 

  32. Fröhlich, A.: On non-ramified extensions with prescribed Galois group. Mathematika 9(2), 133–134 (1962)

    MathSciNet  Google Scholar 

  33. Gerth, F., III: Extension of conjectures of Cohen and Lenstra. Expositiones Mathematicae. Int J. Pure Appl. Math. 5(2), 181–184 (1987)

    Google Scholar 

  34. Golod, E.S., Shafarevich, I.R.: On the class field tower. Izv. Akad. Nauk SSSR, Ser. Mat. 28, 261–272 (1964)

    MathSciNet  Google Scholar 

  35. Griffiths, P., Harris, J.: On the variety of special linear systems on a general algebraic curve. Duke Math. J. 47(1), 233–272 (1980)

    MathSciNet  Google Scholar 

  36. Hajir, F., Maire, C., Ramakrishna, R.: Infinite class field towers of number fields of prime power discriminant. Adv. Math. 373, 107318 (2020)

    MathSciNet  Google Scholar 

  37. Hall, J.: A relative GAGA principle for families of curves. J. Lond. Math. Soc. (2) 90(1), 29–48 (2014)

    MathSciNet  Google Scholar 

  38. Kedlaya, K.: A construction of polynomials with squarefree discriminants. Proc. Am. Math. Soc. 140(9), 3025–3033 (2012)

    MathSciNet  Google Scholar 

  39. Keel, S., Mori, S.: Quotients by groupoids. Ann. Math. (2) 145(1), 193–213 (1997)

    MathSciNet  Google Scholar 

  40. Kim, K.-S.: Construction of unramified extensions with a prescribed Galois group. Osaka J. Math. 52(4), 1039–1051 (2015)

    MathSciNet  Google Scholar 

  41. Kim, K.-S., König, J.: Some examples of quadratic fields with finite nonsolvable maximal unramified extensions II (2017). arXiv:1709.08453 [math]

  42. Klagsbrun, Z.: Davenport-Heilbronn Theorems for Quotients of Class Groups (2017). arXiv:1701.02834 [math]

  43. Klagsbrun, Z.: The average sizes of two-torsion subgroups in quotients of class groups of cubic fields (2017). arXiv:1701.02838 [math]

  44. Klys, J.: The Distribution of \(p\)-Torsion in Degree \(p\) Cyclic Fields (2016). arXiv:1610.00226 [math]

  45. Klys, J.: Moments of unramified 2-group extensions of quadratic fields (2017). arXiv:1710.00793 [math]

  46. Knutson, D.: Algebraic Spaces, pages vi+261 (1971)

    Google Scholar 

  47. Koch, H.: Galois Theory of \(p\)-Extensions. Springer Monographs in Mathematics. Springer, Berlin Heidelberg (2002)

    Google Scholar 

  48. Koymans, P., Pagano, C.: On the distribution of \({ \mathrm{Cl}}(K)[l^{\infty}]\) for degree \(l\) cyclic fields. J. Eur. Math. Soc. 24(4), 1189–1283 (2022)

    MathSciNet  Google Scholar 

  49. Liu, Y., Wood, M.M.: The free group on \(n\) generators modulo \(n+u\) random relations as n goes to infinity. J. Reine Angew. Math. 762, 123–166 (2020)

    MathSciNet  Google Scholar 

  50. Malle, G.: Cohen–Lenstra heuristic and roots of unity. J. Number Theory 128(10), 2823–2835 (2008)

    MathSciNet  Google Scholar 

  51. Malle, G.: On the distribution of class groups of number fields. Exp. Math. 19(4), 465–474 (2010)

    MathSciNet  Google Scholar 

  52. Malle, G., Heinrich Matzat, B.: Inverse Galois Theory. Springer Monographs in Mathematics. Springer, Berlin (1999)

    Google Scholar 

  53. Mayer, D.C.: Recent progress in determining \(p\)-class field towers. Gulf J. Math. 4(4), 74–102 (2016)

    MathSciNet  Google Scholar 

  54. Milne, J.S.: Lectures on etale cohomology. http://www.jmilne.org/math/CourseNotes/ (2013)

  55. Neukirch, J.: On solvable number fields. Invent. Math. 53(2), 135–164 (1979)

    MathSciNet  Google Scholar 

  56. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2008)

    Google Scholar 

  57. Olsson, M.: Algebraic Spaces and Stacks. American Mathematical Society Colloquium Publications., vol. 62. Am. Math. Soc., Providence (2016)

    Google Scholar 

  58. Ribes, L., Zalesskii, P.: Profinite Groups, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 40. Springer, Berlin (2010)

    Google Scholar 

  59. Romagny, M., Wewers, S.: Hurwitz spaces. In: Groupes de Galois Arithmétiques et Différentiels. Sémin. Congr., vol. 13, pp. 313–341. Soc. Math. France, Paris (2006)

    Google Scholar 

  60. Rydh, D.: Existence and properties of geometric quotients. J. Algebraic Geom. 22(4), 629–669 (2013)

    MathSciNet  Google Scholar 

  61. Schoof, R.: Infinite class field towers of quadratic fields. J. Reine Angew. Math. 372, 209–220 (1986)

    MathSciNet  Google Scholar 

  62. Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics. Springer, New York (1977)

    Google Scholar 

  63. Serre, J.-P.: Topics in Galois Theory. Research Notes in Mathematics, vol. 1. Jones and Bartlett Publishers, Boston (1992)

    Google Scholar 

  64. Shafarevich, I.R.: Algebraic number fields. In: Proc. Internat. Congr. Mathematicians, Stockholm, 1962, pp. 163–176. Inst. Mittag-Leffler, Djursholm (1963)

    Google Scholar 

  65. Shafarevich, I.R.: Extensions with prescribed ramification points. Publ. Math. IHÉS 18, 71–95 (1963)

    MathSciNet  Google Scholar 

  66. Smith, A.: \(2^{\infty}\)-Selmer groups, \(2^{\infty}\)-class groups, and Goldfeld’s conjecture (2017). arXiv:1702.02325 [math]

  67. Taussky, O.: A remark on the class field tower*. J. Lond. Math. Soc. s1–12(2), 82–85 (1937)

    MathSciNet  Google Scholar 

  68. The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu

  69. Uchida, K.: Unramified extensions of quadratic number fields. II. Tohoku Math. J. (2) 22, 220–224 (1970)

    MathSciNet  Google Scholar 

  70. Venkov, B., Koch, H.: The \(p\)-tower of class fields for an imaginary quadratic field. J. Sov. Math. 9(3), 291–299 (1978)

    Google Scholar 

  71. Wang, W., Wood, M.M.: Moments and interpretations of the Cohen-Lenstra-Martinet heuristics. Comment. Math. Helv. 96(2), 339–387 (2021)

    MathSciNet  Google Scholar 

  72. Wewers, S.: Construction of Hurwitz Spaces. IEM (1998)

    Google Scholar 

  73. Wood, M.M.: On the probabilities of local behaviors in Abelian field extensions. Compos. Math. 146(1), 102–128 (2010)

    MathSciNet  Google Scholar 

  74. Wood, M.M.: Cohen-Lenstra heuristics and local conditions. Res. Number Theory 4(4), 41 (2018)

    MathSciNet  Google Scholar 

  75. Wood, M.M.: Nonabelian Cohen-Lenstra moments. Duke Math. J. 168(3), 377–427 (2019)

    MathSciNet  Google Scholar 

  76. Wood, M.M.: An algebraic lifting invariant of Ellenberg, Venkatesh, and Westerland. Res. Math. Sci. 8(2), Article ID 21 (2021)

    MathSciNet  Google Scholar 

  77. Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970)

    MathSciNet  Google Scholar 

  78. Yamamura, K.: Maximal unramified extensions of imaginary quadratic number fields of small conductors. II. J. Théor. Nr. Bordx. 13(2), 633–649 (2001)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Brandon Alberts, Nigel Boston, Michael Bush, Brian Conrad, Jordan Ellenberg, Joseph Gunther, Jack Hall, Aaron Landesman, Jonah Leshin, Akshay Venkatesh, and Weitong Wang for important and fruitful conversations regarding the work in this paper, and Alex Bartel and Michael Bush for comments on an earlier draft. We are deeply indebted to the anonymous referees for extensive comments that improved greatly the exposition of the paper. The first author was partially supported by NSF grants DMS-1301690, DMS-1652116 and DMS-2200541. The second author was partially supported by an American Institute of Mathematics Five-Year Fellowship, a Packard Fellowship for Science and Engineering, a Sloan Research Fellowship, NSF grants DMS-1301690 and DMS-2052036, NSF Waterman Award DMS-2140043, a Radcliffe Fellowship at the Radcliffe Institute for Advanced Study at Harvard University, and a MacArthur Fellowship. The third author was partially supported by NSF grants DMS-1555048 and DMS-2302356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Matchett Wood.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the style of reference was not correct

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wood, M.M. & Zureick-Brown, D. A predicted distribution for Galois groups of maximal unramified extensions. Invent. math. 237, 49–116 (2024). https://doi.org/10.1007/s00222-024-01257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-024-01257-1

Navigation